Exact solution of an octagonal random tiling model

被引:16
作者
deGier, J
Nienhuis, B
机构
[1] Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Amsterdam, 1018 XE
关键词
D O I
10.1103/PhysRevLett.76.2918
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the two-dimensional random tiling model introduced by Cockayne, i.e., the ensemble of all possible coverings of the plane without gaps or overlaps with squares and various hexagons. At the appropriate relative densities the correlations have eightfold rotational symmetry. We reformulate the model in terms of a random tiling ensemble with identical rectangles and isosceles triangles. The partition function of this model can be calculated by diagonalizing a transfer matrix using the Bethe Ansatz (BA). The BA equations can be solved providing exact values of the entropy and elastic constants.
引用
收藏
页码:2918 / 2921
页数:4
相关论文
共 7 条
[1]   ATOMISTIC OCTAGONAL RANDOM-TILING MODEL [J].
COCKAYNE, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (18) :6107-6119
[2]   QUASICRYSTALS - A NEW CLASS OF ORDERED STRUCTURES - COMMENT [J].
ELSER, V .
PHYSICAL REVIEW LETTERS, 1985, 54 (15) :1730-1730
[3]  
Henley C L, 1991, QUASICRYSTALS STATE, P429
[4]   THE SQUARE-TRIANGLE RANDOM-TILING MODEL IN THE THERMODYNAMIC LIMIT [J].
KALUGIN, PA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (11) :3599-3614
[5]   PHASE-DIAGRAM OF A RANDOM TILING QUASI-CRYSTAL [J].
LI, WX ;
PARK, H ;
WIDOM, M .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (1-2) :1-69
[6]   RANDOM SQUARE-TRIANGLE TILINGS - A MODEL FOR TWELVEFOLD-SYMMETRICAL QUASI-CRYSTALS [J].
OXBORROW, M ;
HENLEY, CL .
PHYSICAL REVIEW B, 1993, 48 (10) :6966-6998
[7]   BETHE ANSATZ SOLUTION OF THE SQUARE-TRIANGLE RANDOM TILING MODEL [J].
WIDOM, M .
PHYSICAL REVIEW LETTERS, 1993, 70 (14) :2094-2097