Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status

被引:258
作者
Cheng, SWY
Fryer, LGD
Carling, D
Shepherd, PR
机构
[1] UCL, Dept Biochem & Mol Biol, London WC1E 6BT, England
[2] Univ London Imperial Coll Sci Technol & Med, MRC, Ctr Clin Sci, Cellular Stress Grp, London W12 0NN, England
基金
英国医学研究理事会;
关键词
D O I
10.1074/jbc.C300534200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mammalian target of rapamycin (mTOR) is a key regulator of protein translation. Signaling via mTOR is increased by growth factors but decreased during nutrient deprivation. Previous studies have identified Ser(2448) as a nutrient-regulated phosphorylation site located in the mTOR catalytic domain, insulin stimulates Ser(2448) phosphorylation via protein kinase B (PKB), while Ser(2448) phosphorylation is attenuated with amino acid starvation. Here we have identified Thr(2446) as a novel nutrient-regulated phosphorylation site on mTOR. Thr(2446) becomes phosphorylated when CHO-IR cells are nutrient-deprived, but phosphorylation is reduced by insulin stimulation. Nutrient deprivation activates AMP-activated protein kinase (AMPK). To test whether this could be involved in regulating phoshorylation of mTOR, we treated cultured murine myotubes with 5'-aminoimidazole-4-carboxamide ribonucleoside (AICAR) or dinitrophenol (DNP). Both treatments activated AMPK and also caused a concomitant increase in phosphorylation of Thr(2446) and a parallel decrease in insulin's ability to phosphorylate p70 S6 kinase. In vitro kinase assays using peptides based on the sequence in amino acids 2440-2551 of mTOR found that PKB and AMPK are capable of phosphorylating sites in this region. However, phosphorylation by PKB is restricted when Thr(2446) is mutated to an acidic residue mimicking phosphorylation. Conversely, AMP-kinase-induced phosphorylation is reduced when Ser(2448) is phosphorylated. These data suggest differential phosphorylation Thr(2446) and Ser(2448) could act as a switch mechanism to integrate signals from nutrient status and growth factors to control the regulation of protein translation.
引用
收藏
页码:15719 / 15722
页数:4
相关论文
共 46 条
[1]   Mammalian target of rapamycin: immunosuppressive drugs uncover a novel pathway of cytokine receptor signaling [J].
Abraham, RT .
CURRENT OPINION IN IMMUNOLOGY, 1998, 10 (03) :330-336
[2]  
Azpiazu I, 1996, J BIOL CHEM, V271, P5033
[3]   Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation [J].
Beretta, L ;
Gingras, AC ;
Svitkin, YV ;
Hall, MN ;
Sonenberg, N .
EMBO JOURNAL, 1996, 15 (03) :658-664
[4]   Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability [J].
Beugnet, A ;
Tee, AR ;
Taylor, PM ;
Proud, CG .
BIOCHEMICAL JOURNAL, 2003, 372 :555-566
[5]   AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. [J].
Bolster, DR ;
Crozier, SJ ;
Kimball, SR ;
Jefferson, LS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (27) :23977-23980
[6]   A MAMMALIAN PROTEIN TARGETED BY G1-ARRESTING RAPAMYCIN-RECEPTOR COMPLEX [J].
BROWN, EJ ;
ALBERS, MW ;
SHIN, TB ;
ICHIKAWA, K ;
KEITH, CT ;
LANE, WS ;
SCHREIBER, SL .
NATURE, 1994, 369 (6483) :756-758
[7]   CONTROL OF P70 S6 KINASE BY KINASE-ACTIVITY OF FRAP IN-VIVO [J].
BROWN, EJ ;
BEAL, PA ;
KEITH, CT ;
CHEN, J ;
SHIN, TB ;
SCHREIBER, SL .
NATURE, 1995, 377 (6548) :441-446
[8]   The mammalian target of rapamycin phosphorylates sites having a (Ser/Thr)-Pro motif and is activated by antibodies to a region near its COOH terminus [J].
Brunn, GJ ;
Fadden, P ;
Haystead, TAJ ;
Lawrence, JC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (51) :32547-32550
[9]   Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin [J].
Brunn, GJ ;
Hudson, CC ;
Sekulic, A ;
Williams, JM ;
Hosoi, H ;
Houghton, PJ ;
Lawrence, JC ;
Abraham, RT .
SCIENCE, 1997, 277 (5322) :99-101
[10]   Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002 [J].
Brunn, GJ ;
Williams, J ;
Sabers, C ;
Wiederrecht, G ;
Lawrence, JC ;
Abraham, RT .
EMBO JOURNAL, 1996, 15 (19) :5256-5267