Structural and spectral response of green fluorescent protein variants to changes in pH

被引:277
作者
Elsliger, MA
Wachter, RM
Hanson, GT
Kallio, K
Remington, SJ [1 ]
机构
[1] Univ Oregon, Inst Mol Biol, Eugene, OR 97403 USA
[2] Univ Oregon, Dept Phys, Eugene, OR 97403 USA
关键词
D O I
10.1021/bi9902182
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The green fluorescent protein (GFP) from the jellyfish Aequorea victoria has become a useful tool in molecular and cell biology. Recently, it has been found that the fluorescence spectra of most mutants of GFP respond rapidly and reversibly to pH variations, making them useful as probes of intracellular pH, To explore the structural basis for the titration behavior of the popular GFP S65T variant, we determined high-resolution crystal structures at pH 8.0 and 4.6. The structures revealed changes in the hydrogen bond pattern with the chromophore, suggesting that the pH sensitivity derives from protonation of the chromophore phenolate. Mutations were designed in yellow fluorescent protein (SG5G/V68L/S72A/T203Y) to change the solvent accessibility (H148G) and to modify polar groups (H148Q, E222Q) near the chromophore. pH titrations of these variants indicate that the chromophore pK(a) can be modulated over a broad range from 6 to 8, allowing for pH determination from pH 5 to pH 9, Finally, mutagenesis was used to raise the pK(a) from 6.0 (S65T) to 7.8 (S65T/H148D). Unlike other variants, S65T/H148D exhibits two pH-dependent excitation peaks for green fluorescence with a clean isosbestic point. This raises the interesting possibility of using fluorescence at this isosbestic point, as an internal reference. Practical real time in vivo applications in cell and developmental biology are proposed.
引用
收藏
页码:5296 / 5301
页数:6
相关论文
共 33 条
[1]   Spatial organization of calcium dynamics in growth cones of sensory neurones [J].
Amato, A ;
AlMohanna, FA ;
Bolsover, SR .
DEVELOPMENTAL BRAIN RESEARCH, 1996, 92 (01) :101-110
[2]  
Barltrop J. A., 1978, PRINCIPLES PHOTOCHEM
[3]   Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein [J].
Brejc, K ;
Sixma, TK ;
Kitts, PA ;
Kain, SR ;
Tsien, RY ;
Ormo, M ;
Remington, SJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (06) :2306-2311
[4]   Identification of PLCγ-dependent and -independent events during fertilization of sea urchin eggs [J].
Carroll, DJ ;
Albay, DT ;
Terasaki, M ;
Jaffe, LA ;
Foltz, KR .
DEVELOPMENTAL BIOLOGY, 1999, 206 (02) :232-247
[5]   Ultra-fast excited state dynamics in green fluorescent protein: Multiple states and proton transfer [J].
Chattoraj, M ;
King, BA ;
Bublitz, GU ;
Boxer, SG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (16) :8362-8367
[6]   FACS-optimized mutants of the green fluorescent protein (GFP) [J].
Cormack, BP ;
Valdivia, RH ;
Falkow, S .
GENE, 1996, 173 (01) :33-38
[7]   UNDERSTANDING, IMPROVING AND USING GREEN FLUORESCENT PROTEINS [J].
CUBITT, AB ;
HEIM, R ;
ADAMS, SR ;
BOYD, AE ;
GROSS, LA ;
TSIEN, RY .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (11) :448-455
[8]  
Fersht A., 1985, ENZYME STRUCTURE MEC
[9]   Green fluorescent protein: Applications in cell biology [J].
Gerdes, HH ;
Kaether, C .
FEBS LETTERS, 1996, 389 (01) :44-47
[10]   Real time imaging of calcium-induced localized proteolytic activity after axotomy and its relation to growth cone formation [J].
Gitler, D ;
Spira, ME .
NEURON, 1998, 20 (06) :1123-1135