A versatile, molecular engineering approach to simultaneously enhanced, multifunctional carbon-nanotube-polymer composites

被引:101
作者
Chen, J
Ramasubramaniam, R
Xue, C
Liu, H
机构
[1] Univ Wisconsin, Dept Chem, Milwaukee, WI 53211 USA
[2] Zyvex Corp, Richardson, TX 75081 USA
[3] Michigan Technol Univ, Dept Chem, Houghton, MI 49931 USA
关键词
D O I
10.1002/adfm.200500590
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-walled carbon nanotubes (SWNTs) are recognized as the ultimate carbon fibers for high-performance, multifunctional composites. The remarkable multifunctional properties of pristine SWNTs have proven, however, difficult to harness simultaneously in polymer composites, a problem that arises largely because of the smooth surface of the carbon nanotubes (i.e., sidewalls), which is incompatible with most solvents and polymers, and leads to a poor dispersion of SWNTs in polymer matrices, and weak SWNT-polymer adhesion. Although covalently functionalized carbon nanotubes are excellent reinforcements for mechanically strong composites, they are usually less attractive fillers for multifunctional composites, because the covalent functionalization of nanotube sidewalls can considerably alter, or even destroy, the nanotubes' desirable intrinsic properties. We report for the first time that the molecular engineering of the interface between non-covalently functionalized SWNTs and the surrounding polymer matrix is crucial for achieving the dramatic and simultaneous enhancement in mechanical and electrical properties of SWNT-polymer composites. We demonstrate that the molecularly designed interface of SWNT-matrix polymer leads to multifunctional SWNT-polymer composite films stronger than pure aluminum, but with only half the density of aluminum, while concurrently providing electroconductivity and room-temperature solution processability.
引用
收藏
页码:114 / 119
页数:6
相关论文
共 56 条
  • [1] Ajayan PM, 2000, ADV MATER, V12, P750, DOI 10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO
  • [2] 2-6
  • [3] Carbon nanotube polymer composites
    Andrews, R
    Weisenberger, MC
    [J]. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2004, 8 (01) : 31 - 37
  • [4] Andrews R, 2002, MACROMOL MATER ENG, V287, P395, DOI 10.1002/1439-2054(20020601)287:6<395::AID-MAME395>3.0.CO
  • [5] 2-S
  • [6] Measurement of carbon nanotube-polymer interfacial strength
    Barber, AH
    Cohen, SR
    Wagner, HD
    [J]. APPLIED PHYSICS LETTERS, 2003, 82 (23) : 4140 - 4142
  • [7] Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix
    Barber, AH
    Cohen, SR
    Kenig, S
    Wagner, HD
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2004, 64 (15) : 2283 - 2289
  • [8] SWNT-filled thermoplastic and elastomeric composites prepared by miniemulsion polymerization
    Barraza, HJ
    Pompeo, F
    O'Rear, EA
    Resasco, DE
    [J]. NANO LETTERS, 2002, 2 (08) : 797 - 802
  • [9] Carbon nanotube composites for thermal management
    Biercuk, MJ
    Llaguno, MC
    Radosavljevic, M
    Hyun, JK
    Johnson, AT
    Fischer, JE
    [J]. APPLIED PHYSICS LETTERS, 2002, 80 (15) : 2767 - 2769
  • [10] A generic organometallic approach toward ultra-strong carbon nanotube polymer composites
    Blake, R
    Gun'ko, YK
    Coleman, J
    Cadek, M
    Fonseca, A
    Nagy, JB
    Blau, WJ
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (33) : 10226 - 10227