Synergistic inhibition of HIV-1 reverse transcriptase by combinations of chain-terminating nucleotides

被引:23
作者
Villahermosa, ML [1 ]
MartinezIrujo, JJ [1 ]
Cabodevilla, F [1 ]
Santiago, E [1 ]
机构
[1] UNIV NAVARRA,DEPT BIOCHEM & MOL BIOL,E-31080 PAMPLONA,SPAIN
关键词
D O I
10.1021/bi970852k
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Synergistic inhibition of HIV replication in cell culture has been reported for many combinations of reverse transcriptase inhibitors. However, the biochemical basis underlying this interaction is in most cases unknown. It has been previously shown that combinations of L-697,661 or U-90152s with AZT or ddC synergistically inhibit HIV-1 replication in cell culture. The combination of AZT with ddC is also favorable with respect to the inhibition of viral replication. However, the corresponding combinations showed no synergy in inhibiting enzyme activity when tested on conventional polymerase assays using home-or heteropolymeric RNA and DNA as template. Data obtained suggest that amplification of the effect of chain terminators, a consequence of the high potential number of termination sites present on the template, override the synergistic effect expected for the combination of two independent nucleotide analogs. When a saturating amount of enzyme over template:primer was used, and a single site on the template was available for each chain terminator, the combination of AZTTP and ddCTP synergistically inhibited enzyme activity, whereas, as expected, the combination of AZTTP and ddTTP behaved as merely additive. Under similar conditions the combination of U-90152s and AZTTP was also synergistic. These results suggest that synergy found in antiviral assays with combinations having nucleosidic inhibitors is not related to the synergistic inhibition of reverse transcriptase and might be due to the presence in the viral population of virus strains with different sensitivity to the inhibitors.
引用
收藏
页码:13223 / 13231
页数:9
相关论文
共 40 条
[1]  
BALZARINI J, 1992, J BIOL CHEM, V267, P11831
[2]  
BERENBAUM MC, 1989, PHARMACOL REV, V41, P93
[3]   Favorable interaction of beta-L(-) nucleoside analogues with clinically approved Anti-HIV nucleoside analogues for the treatment of human immunodeficiency virus [J].
Bridges, EG ;
Dutschman, GE ;
Gullen, EA ;
Cheng, YC .
BIOCHEMICAL PHARMACOLOGY, 1996, 51 (06) :731-736
[4]   COMPARITIVE ANTI-HIV EVALUATION OF DIVERSE HIV-1-SPECIFIC REVERSE-TRANSCRIPTASE INHIBITOR-RESISTANT VIRUS ISOLATES DEMONSTRATES THE EXISTENCE OF DISTINCT PHENOTYPIC SUBGROUPS [J].
BUCKHEIT, RW ;
FLIAKASBOLTZ, V ;
DECKER, WD ;
ROBERSON, JL ;
STUP, TL ;
PYLE, CA ;
WHITE, EL ;
MCMAHON, JB ;
CURRENS, MJ ;
BOYD, MR ;
BADER, JP .
ANTIVIRAL RESEARCH, 1995, 26 (02) :117-132
[5]   CELL-BASED AND BIOCHEMICAL-ANALYSIS OF THE ANTI-HIV ACTIVITY OF COMBINATIONS OF 3'-AZIDO-3'-DEOXYTHYMIDINE AND ANALOGS OF TIBO [J].
BUCKHEIT, RW ;
WHITE, EL ;
GERMANYDECKER, J ;
ALLEN, LB ;
ROSS, LJ ;
SHANNON, WM ;
JANSSEN, PAJ ;
CHIRIGOS, MA .
ANTIVIRAL CHEMISTRY & CHEMOTHERAPY, 1994, 5 (01) :35-42
[6]  
CARROLL SS, 1994, J BIOL CHEM, V269, P32351
[7]  
CHATTOPADHYAY D, 1992, J BIOL CHEM, V267, P14227
[8]   BISHETEROARYLPIPERAZINE REVERSE-TRANSCRIPTASE INHIBITOR IN COMBINATION WITH 3'-AZIDO-3'-DEOXYTHYMIDINE OR 2',3'-DIDEOXYCYTIDINE SYNERGISTICALLY INHIBITS HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 REPLICATION IN-VITRO [J].
CHONG, KT ;
PAGANO, PJ ;
HINSHAW, RR .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1994, 38 (02) :288-293
[9]   HIV POPULATION-DYNAMICS IN-VIVO - IMPLICATIONS FOR GENETIC-VARIATION, PATHOGENESIS, AND THERAPY [J].
COFFIN, JM .
SCIENCE, 1995, 267 (5197) :483-489
[10]   ANTI-HUMAN-IMMUNODEFICIENCY-VIRUS SYNERGISM BY ZIDOVUDINE (3'-AZIDOTHYMIDINE) AND DIDANOSINE (DIDEOXYINOSINE) CONTRASTS WITH THEIR ADDITIVE INHIBITION OF NORMAL HUMAN MARROW PROGENITOR CELLS [J].
DORNSIFE, RE ;
STCLAIR, MH ;
HUANG, AT ;
PANELLA, TJ ;
KOSZALKA, GW ;
BURNS, CL ;
AVERETT, DR .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1991, 35 (02) :322-328