Minimal energy surfaces using parametric splines

被引:32
作者
Fasshauer, GE [1 ]
Schumaker, LL [1 ]
机构
[1] VANDERBILT UNIV, DEPT MATH, NASHVILLE, TN 37240 USA
基金
美国国家科学基金会;
关键词
minimal energy surfaces; parametric splines; generalized triangulations; interpolation; filling holes; crowning;
D O I
10.1016/0167-8396(95)00006-2
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We explore the construction of parametric surfaces which interpolate prescribed 3D scattered data using spaces of parametric splines defined on a 2D triangulation. The method is based on minimizing certain natural energy expressions. Several examples involving Ailing holes and crowning surfaces are presented, and the role of the triangulation as a parameter is explored. The problem of creating closed surfaces is also addressed. This requires introducing spaces of splines on certain generalized triangulations.
引用
收藏
页码:45 / 79
页数:35
相关论文
共 64 条
  • [1] ON THE DIMENSION OF BIVARIATE SPLINE SPACES OF SMOOTHNESS-R AND DEGREE D = 3R + 1
    ALFELD, P
    SCHUMAKER, LL
    [J]. NUMERISCHE MATHEMATIK, 1990, 57 (6-7) : 651 - 661
  • [2] AN EXPLICIT BASIS FOR C1 QUARTIC BIVARIATE SPLINES
    ALFELD, P
    PIPER, B
    SCHUMAKER, LL
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) : 891 - 911
  • [3] THE GENERIC DIMENSION OF THE SPACE OF C1 SPLINES OF DEGREE D-GREATER-THAN-OR-EQUAL-TO-8 ON TETRAHEDRAL DECOMPOSITIONS
    ALFELD, P
    SCHUMAKER, LL
    WHITELEY, W
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (03) : 889 - 920
  • [4] Alfeld P., 1984, Computer-Aided Geometric Design, V1, P169, DOI 10.1016/0167-8396(84)90029-3
  • [5] ALFELD P, 1984, 2707 MRC U WISC MAD
  • [6] [Anonymous], GEOMETRIC MODELING
  • [7] CELNIKER G, 1991, COMP GRAPH, V25, P257, DOI 10.1145/127719.122746
  • [8] COONS S, 1964, SURFACES COMPUTER AI
  • [9] de Boor C, 1987, GEOMETRIC MODELING A, P131
  • [10] DEROSE T, 1992, MATH METHODS COMPUTE, V2, P185