Automated design of the surface positions of protein helices

被引:192
作者
Dahiyat, BI
Gordon, DB
Mayo, SL
机构
[1] CALTECH,DIV CHEM & CHEM ENGN,PASADENA,CA 91125
[2] CALTECH,HOWARD HUGHES MED INST,PASADENA,CA 91125
[3] CALTECH,DIV BIOL,PASADENA,CA 91125
关键词
coiled coils; helix propensities; protein design; surface residues;
D O I
10.1002/pro.5560060622
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Using a protein design algorithm that quantitatively considers side-chain interactions, the design of surface residues of alpha helices was examined. Three scoring functions were tested: a hydrogen-bond potential, a hydrogen-bond potential in conjunction with a penalty for uncompensated burial of polar hydrogens, and a hydrogen-bond potential in combination with helix propensity. The solvent exposed residues of a homodimeric coiled coil based on GCN4-p1 were designed by using the Dead-End Elimination Theorem to find the optimal amino acid sequence for each scoring function. The corresponding peptides were synthesized and characterized by circular dichroism spectroscopy and size exclusion chromatography. The designed peptides were dimeric and nearly 100% helical at 1 degrees C, with melting temperatures from 69-72 degrees C, over 12 degrees C higher than GCN4-p1, whereas a random hydrophilic sequence at the surface positions produced a peptide that melted at 15 degrees C. Analysis of the designed sequences suggests that helix propensity is the key factor in sequence design for surface helical positions.
引用
收藏
页码:1333 / 1337
页数:5
相关论文
共 33 条
  • [1] [Anonymous], 1980, BIOPHYS CHEM
  • [2] PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES
    BERNSTEIN, FC
    KOETZLE, TF
    WILLIAMS, GJB
    MEYER, EF
    BRICE, MD
    RODGERS, JR
    KENNARD, O
    SHIMANOUCHI, T
    TASUMI, M
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) : 535 - 542
  • [3] Controlling topology and native-like behavior of de novo-designed peptides: Design and characterization of antiparallel four-stranded coiled coils
    Betz, SF
    DeGrado, WF
    [J]. BIOCHEMISTRY, 1996, 35 (21) : 6955 - 6962
  • [4] STRUCTURAL BASIS OF AMINO-ACID ALPHA-HELIX PROPENSITY
    BLABER, M
    ZHANG, XJ
    MATTHEWS, BW
    [J]. SCIENCE, 1993, 260 (5114) : 1637 - 1640
  • [5] DECIPHERING THE MESSAGE IN PROTEIN SEQUENCES - TOLERANCE TO AMINO-ACID SUBSTITUTIONS
    BOWIE, JU
    REIDHAAROLSON, JF
    LIM, WA
    SAUER, RT
    [J]. SCIENCE, 1990, 247 (4948) : 1306 - 1310
  • [6] CHAKRABARTTY A, 1994, PROTEIN SCI, V3, P843
  • [7] ALPHA-HELICAL COILED COILS AND BUNDLES - HOW TO DESIGN AN ALPHA-HELICAL PROTEIN
    COHEN, C
    PARRY, DAD
    [J]. PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1990, 7 (01): : 1 - 15
  • [8] Protein design automation
    Dahiyat, BI
    Mayo, SL
    [J]. PROTEIN SCIENCE, 1996, 5 (05) : 895 - 903
  • [9] DAHIYAT BI, IN PRESS P NATL ACAD
  • [10] DE-NOVO DESIGN OF THE HYDROPHOBIC CORES OF PROTEINS
    DESJARLAIS, JR
    HANDEL, TM
    [J]. PROTEIN SCIENCE, 1995, 4 (10) : 2006 - 2018