Bond-order potential for molybdenum: Application to dislocation behavior

被引:119
作者
Mrovec, M
Nguyen-Manh, D
Pettifor, DG
Vitek, V
机构
[1] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[2] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
关键词
D O I
10.1103/PhysRevB.69.094115
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The bond-order potential (BOP) for transition metals is a real-space semiempirical description of interactions between the atoms, which is based on the tight-binding approximation and the d-band model. This scheme provides a direct bridge between the electronic level modeling and the atomistic modeling, where the electronic degrees of freedom have been coarse grained into many-body interatomic potentials. In this paper we construct BOP in which both the attractive and the repulsive contributions to the binding energy are environmentally dependent due to both the nonorthogonality of the orbitals and the breathing of the screening charges. The construction of the BOP is described and tested in detail. First, the energies of alternative crystal structures (A15, fcc, hcp, simple cubic) are calculated and compared with those evaluated ab initio. The transferability of the BOP to atomic configurations that deviate significantly from the bcc lattice is studied by computing the energies along tetragonal, trigonal, and hexagonal transformation paths. Next, the phonon spectra are evaluated for several symmetrical crystallographic directions and compared with available experiments. All these calculations highlight the importance of directional bonding and the investigation of phonons demonstrates that the environmental dependence of the bond integrals is crucial for the phonons of the N branch not to be unphysically soft. Finally, the constructed BOP was applied in the modeling of the core structure and glide of the 1/2<111> screw dislocation. The calculated structure of the core agrees excellently with that found in the recent ab initio calculations and the observed glide behavior not only agrees with available ab initio data but is in agreement with many experimental observations and explains the primary reason for the breakdown of the Schmid law in bcc metals.
引用
收藏
页数:16
相关论文
共 89 条
[1]   SIMPLE N-BODY POTENTIALS FOR THE NOBLE-METALS AND NICKEL [J].
ACKLAND, GJ ;
TICHY, G ;
VITEK, V ;
FINNIS, MW .
PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1987, 56 (06) :735-756
[2]   AN IMPROVED N-BODY SEMIEMPIRICAL MODEL FOR BODY-CENTERED CUBIC TRANSITION-METALS [J].
ACKLAND, GJ ;
THETFORD, R .
PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1987, 56 (01) :15-30
[3]  
Andersen O.K., 1986, Electronic band structure and its applications, DOI DOI 10.1007/3540180982_1
[4]   Third-generation TB-LMTO [J].
Andersen, OK ;
Arcangeli, C ;
Tank, RW ;
Saha-Dasgupta, T ;
Krier, G ;
Jepsen, O ;
Dasgupta, I .
TIGHT-BINDING APPROACH TO COMPUTATIONAL MATERIALS SCIENCE, 1998, 491 :3-34
[5]  
[Anonymous], 1996, HIGH TEMPERATURE STR
[6]  
[Anonymous], 1960, P 5 INT C CRYST CAMB
[7]  
AOKI M, 1993, INTERATOMIC POTENTIA, V114, P23
[8]  
Bain EC, 1924, T AM I MIN MET ENG, V70, P25
[9]   MODIFIED EMBEDDED-ATOM POTENTIALS FOR CUBIC MATERIALS AND IMPURITIES [J].
BASKES, MI .
PHYSICAL REVIEW B, 1992, 46 (05) :2727-2742
[10]   Complex macroscopic plastic flow arising from non-planar dislocation core structures [J].
Bassani, JL ;
Ito, K ;
Vitek, V .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 319 :97-101