Hydrophobicity loss and recovery of silicone HV insulation

被引:151
作者
Kim, J [2 ]
Chaudhury, MK
Owen, MJ
机构
[1] Dow Corning Corp, Midland, MI USA
[2] Lehigh Univ, Dept Chem Engn, Bethlehem, PA 18015 USA
关键词
D O I
10.1109/94.798126
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Most of the silicone materials used for HV outdoor insulation are high-consistency, heat cured polydimethylsiloxane (PDMS) elastomers. The unique properties of PDMS that make it suitable for HV applications are reviewed. The surface of these elastomers can be rendered hydrophilic by exposure to discharges. A time and temperature dependent hydrophobic recovery ensues when exposure ceases. A variety of surface characterization investigations have established that corona exposure forms a brittle, wettable, silica-like layer on the surface of most PDMS elastomers. This is consistent with similar effects from oxygen and inert gas plasma treatment. There is still considerable debate as to the relative importance of the two major mechanisms postulated to account for the hydrophobic recovery after corona discharge. The diffusion mechanism invokes migration of low molecular weight species from the interior to the surface, while the reorientation or overturn mechanism envisages a surface reorganization with polar entities such as silanol groups resulting from surface oxidation rotating away and being replaced by methyl groups in the outermost surface layers. In our view, the highly crosslinked silica-like layer cannot reorient readily between hydrophilic and hydrophobic states at the surface, suggesting that diffusion of low molecular weight PDMS components is the more important mechanism of hydrophobic recovery. Recent data obtained on PDMS samples free from low-molecular-weight diffusible species show that hydrophobic recovery may be due to in-situ depolymerization.
引用
收藏
页码:695 / 702
页数:8
相关论文
共 35 条