High-efficiency polymer solar cells with a cost-effective quinoxaline polymer through nanoscale morphology control induced by practical processing additives

被引:140
作者
Kim, Yiho [1 ]
Yeom, Hye Rim [1 ]
Kim, Jin Young [1 ]
Yang, Changduk [1 ]
机构
[1] UNIST, Low Dimens Carbon Mat Ctr, KIER UNIST Adv Ctr Energy, Interdisciplinary Sch Green Energy, Ulsan 689798, South Korea
基金
新加坡国家研究基金会;
关键词
PHASE-SEPARATION; POLYFLUORENE COPOLYMER; ORGANIC PHOTOVOLTAICS; HOLE MOBILITY; SIDE-CHAINS; PERFORMANCE; BANDGAP; DESIGN; LAYER; POLY(3-HEXYLTHIOPHENE);
D O I
10.1039/c3ee00110e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the quest to improve the performance of polymer solar cells (PSCs) with a view to realizing economic viability, various solvent additives such as 1,8-octanedithiol (ODT), 1,8-diiodooctane (DIO), diphenylether (DPE) and 1-chloronaphthalene (CN) are used in easily obtainable poly(2,3-bis-(3-octyloxyphenyl)-quinoxaline-5,8-dyl-alt-thiophene-2,5-diyl) (TQ1)-based systems with [6,6]-phenyl C-71-butyric acid methyl ester (PC71BM) as an acceptor to optimize the active layer nanomorphology. Utilizing a combination of X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM), we find that the addition of 5% (v/v) CN leads to smoother films, less heterogeneous surface features, and well-distributed TQ1: PC71BM phases, resulting in more balanced charge transport in the devices and a highly efficient power conversion efficiency (PCE) of 7.08%. This is a record for quinoxaline-based PCSs and is also comparable with the hitherto reported highest efficiency of the PSCs in single junction devices. In addition, the PSCs using an inverted device structure show a satisfactory PCE of 5.83% with high stability to ambient exposure, maintaining over 80% of its initial PCE, even after storage in air for more than 1 month.
引用
收藏
页码:1909 / 1916
页数:8
相关论文
共 68 条
[1]   Toward a rational design of poly(2,7-carbazole) derivatives for solar cells [J].
Blouin, Nicolas ;
Michaud, Alexandre ;
Gendron, David ;
Wakim, Salem ;
Blair, Emily ;
Neagu-Plesu, Rodica ;
Belletete, Michel ;
Durocher, Gilles ;
Tao, Ye ;
Leclerc, Mario .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (02) :732-742
[2]   Low band gap polymers for organic photovoltaics [J].
Bundgaard, Eva ;
Krebs, Frederik C. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (11) :954-985
[3]   Effects of Intercalation on the Hole Mobility of Amorphous Semiconducting Polymer Blends [J].
Cates, Nichole C. ;
Gysel, Roman ;
Dahl, Jeremy E. P. ;
Sellinger, Alan ;
McGehee, Michael D. .
CHEMISTRY OF MATERIALS, 2010, 22 (11) :3543-3548
[4]   Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation [J].
Cates, Nichole C. ;
Gysel, Roman ;
Beiley, Zach ;
Miller, Chad E. ;
Toney, Michael F. ;
Heeney, Martin ;
McCulloch, Iain ;
McGehee, Michael D. .
NANO LETTERS, 2009, 9 (12) :4153-4157
[5]   Polymer solar cells with enhanced open-circuit voltage and efficiency [J].
Chen, Hsiang-Yu ;
Hou, Jianhui ;
Zhang, Shaoqing ;
Liang, Yongye ;
Yang, Guanwen ;
Yang, Yang ;
Yu, Luping ;
Wu, Yue ;
Li, Gang .
NATURE PHOTONICS, 2009, 3 (11) :649-653
[6]   Development of Novel Conjugated Donor Polymers for High-Efficiency Bulk-Heterojunction Photovoltaic Devices [J].
Chen, Junwu ;
Cao, Yong .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (11) :1709-1718
[7]   Recent Progress in Polymer Solar Cells: Manipulation of Polymer: Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells [J].
Chen, Li-Min ;
Hong, Ziruo ;
Li, Gang ;
Yang, Yang .
ADVANCED MATERIALS, 2009, 21 (14-15) :1434-1449
[8]   Morphology characterization in organic and hybrid solar cells [J].
Chen, Wei ;
Nikiforov, Maxim P. ;
Darling, Seth B. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (08) :8045-8074
[9]   Combination of Indene-C60 Bis-Adduct and Cross-Linked Fullerene Interlayer Leading to Highly Efficient Inverted Polymer Solar Cells [J].
Cheng, Yen-Ju ;
Hsieh, Chao-Hsiang ;
He, Youjun ;
Hsu, Chain-Shu ;
Li, Yongfang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (49) :17381-17383
[10]   Simultaneous use of small- and wide-angle X-ray techniques to analyze nanometerscale phase separation in polymer heterojunction solar cells [J].
Chiu, Mao-Yuan ;
Jeng, U-Ser ;
Su, Chiu-Hun ;
Liang, Keng S. ;
Wei, Kung-Hwa .
ADVANCED MATERIALS, 2008, 20 (13) :2573-+