Lattice Microbes: High-Performance Stochastic Simulation Method for the Reaction-Diffusion Master Equation

被引:89
作者
Roberts, Elijah [1 ,2 ]
Stone, John E. [3 ]
Luthey-Schulten, Zaida [1 ,2 ,3 ]
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[2] Univ Illinois, Ctr Phys Living Cells, Urbana, IL 61801 USA
[3] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
chemical master equation; reaction-diffusion master equation; Gillespie algorithm; stochastic simulation; graphics processing unit computing; CHEMICAL-KINETICS; GENE-EXPRESSION; LIVING CELLS; SYSTEMS; NOISE; SOFTWARE; PATHWAY;
D O I
10.1002/jcc.23130
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Spatial stochastic simulation is a valuable technique for studying reactions in biological systems. With the availability of high-performance computing (HPC), the method is poised to allow integration of data from structural, single-molecule and biochemical studies into coherent computational models of cells. Here, we introduce the Lattice Microbes software package for simulating such cell models on HPC systems. The software performs either well-stirred or spatially resolved stochastic simulations with approximated cytoplasmic crowding in a fast and efficient manner. Our new algorithm efficiently samples the reaction-diffusion master equation using NVIDIA graphics processing units and is shown to be two orders of magnitude faster than exact sampling for large systems while maintaining an accuracy of similar to 0.1%. Display of cell models and animation of reaction trajectories involving millions of molecules is facilitated using a plug-in to the popular VMD visualization platform. The Lattice Microbes software is open source and available for download at http://www.scs.illinois.edu/schulten/lm (C) 2012 Wiley Periodicals, Inc. DOI: 10.1002/jcc.23130
引用
收藏
页码:245 / 255
页数:11
相关论文
共 56 条
[1]  
[Anonymous], 1998, Cellular Automata Modeling of Physical Systems
[2]  
Arjunan Satya Nanda Vel, 2010, Syst Synth Biol, V4, P35, DOI 10.1007/s11693-009-9047-2
[3]   R-leaping:: Accelerating the stochastic simulation algorithm by reaction leaps [J].
Auger, Anne ;
Chatelain, Philippe ;
Koumoutsakos, Petros .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (08)
[4]   Anomalous diffusion of proteins due to molecular crowding [J].
Banks, DS ;
Fradin, C .
BIOPHYSICAL JOURNAL, 2005, 89 (05) :2960-2971
[5]  
Beck M, 2009, NAT METHODS, V6, P817, DOI [10.1038/NMETH.1390, 10.1038/nmeth.1390]
[6]   Universal architecture of bacterial chemoreceptor arrays [J].
Briegel, Ariane ;
Ortega, Davi R. ;
Tocheva, Elitza I. ;
Wuichet, Kristin ;
Li, Zhuo ;
Chen, Songye ;
Mueller, Axel ;
Iancu, Cristina V. ;
Murphy, Gavin E. ;
Dobro, Megan J. ;
Zhulin, Igor B. ;
Jensen, Grant J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (40) :17181-17186
[7]   Efficient step size selection for the tau-leaping simulation method [J].
Cao, Y ;
Gillespie, DT ;
Petzold, LR .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (04)
[8]   Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon [J].
Comolli, Luis R. ;
Baker, Brett J. ;
Downing, Kenneth H. ;
Siegerist, Cristina E. ;
Banfield, Jillian F. .
ISME JOURNAL, 2009, 3 (02) :159-167
[9]   Computational methods for diffusion-influenced biochemical reactions [J].
Dobrzynski, Maciej ;
Rodriguez, Jordi Vidal ;
Kaandorp, Jaap A. ;
Blom, Joke G. .
BIOINFORMATICS, 2007, 23 (15) :1969-1977
[10]   The diffusive finite state projection algorithm for efficient simulation of the stochastic reaction-diffusion master equation [J].
Drawert, Brian ;
Lawson, Michael J. ;
Petzold, Linda ;
Khammash, Mustafa .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (07)