Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing

被引:137
作者
Cipriano, Bani H. [2 ]
Kota, Arun K. [1 ]
Gershon, Alan L. [1 ]
Laskowski, Conrad J. [1 ]
Kashiwagi, Takashi [3 ]
Bruck, Hugh A. [1 ]
Raghavan, Srinivasa R. [2 ]
机构
[1] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
[3] Natl Inst Stand & Technol, Fire Res Div, Bldg & Fire Res Lab, Gaithersburg, MD 20878 USA
关键词
Polystyrene; Melt annealing; Nanocomposite;
D O I
10.1016/j.polymer.2008.08.057
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The addition of multi-walled carbon nanotubes (MWCNTs) or carbon nanofibers (CNFs) to polymeric melts Offers a convenient route to obtain highly conductive plastics. However, when these materials are melt processed, their conductivity can be lost. Here, it is shown that conductivities can be recovered through melt annealing at temperatures above the polymer's glass transition temperature (T-g). We demonstrate these results for both MWCNT and CNF-based composites in polystyrene (PS). The mechanism behind the conductivity increase is elucidated through modeling. It involves a transition from aligned, unconnected particles prior to annealing to an interconnected network after annealing through viscoelastic relaxation of the polymer. Such re-arrangement is directly visualized for the case of the CNF-based composites using confocal microscopy. The annealing-induced increase in particle connectivity is also reflected in dynamic rheological measurements on both MWCNT and CNF composites as an increase in their elastic moduli at low frequencies. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4846 / 4851
页数:6
相关论文
共 27 条
[1]   Conductivity spectroscopy on melt processed polypropylene-multiwalled carbon nanotube composites:: Recovery after shear and crystallization [J].
Alig, Ingo ;
Lellinger, Dirk ;
Dudkin, Sergej M. ;
Poetschke, Petra .
POLYMER, 2007, 48 (04) :1020-1029
[2]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[3]  
Bicerano J, 1999, J MACROMOL SCI R M C, VC39, P561
[4]   Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites [J].
Cipiriano, Bani H. ;
Kashiwagi, Takashi ;
Raghavan, Srinivasa R. ;
Yang, Ying ;
Grulke, Eric A. ;
Yamamoto, Kazuya ;
Shields, John R. ;
Douglas, Jack F. .
POLYMER, 2007, 48 (20) :6086-6096
[5]   Multiwalled carbon nanotube/polymer nanocomposites:: Processing and properties [J].
Dalmas, F ;
Chazeau, L ;
Gauthier, C ;
Masenelli-Varlot, K ;
Dendievel, R ;
Cavaillé, JY ;
Forró, L .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2005, 43 (10) :1186-1197
[6]   Super-tough carbon-nanotube fibres -: These extraordinary composite fibres can be woven into electronic textiles. [J].
Dalton, AB ;
Collins, S ;
Muñoz, E ;
Razal, JM ;
Ebron, VH ;
Ferraris, JP ;
Coleman, JN ;
Kim, BG ;
Baughman, RH .
NATURE, 2003, 423 (6941) :703-703
[7]   Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity [J].
Du, FM ;
Scogna, RC ;
Zhou, W ;
Brand, S ;
Fischer, JE ;
Winey, KI .
MACROMOLECULES, 2004, 37 (24) :9048-9055
[8]   Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites [J].
Du, FM ;
Fischer, JE ;
Winey, KI .
PHYSICAL REVIEW B, 2005, 72 (12)
[9]   Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites [J].
Gojny, FH ;
Wichmann, MHG ;
Fiedler, B ;
Kinloch, IA ;
Bauhofer, W ;
Windle, AH ;
Schulte, K .
POLYMER, 2006, 47 (06) :2036-2045
[10]   Flow-induced properties of nanotube-filled polymer materials [J].
Kharchenko, SB ;
Douglas, JF ;
Obrzut, J ;
Grulke, EA ;
Migler, KB .
NATURE MATERIALS, 2004, 3 (08) :564-568