The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis

被引:160
作者
Schlaeppi, Klaus [2 ]
Bodenhausen, Natacha [1 ]
Buchala, Antony [2 ]
Mauch, Felix [2 ]
Reymond, Philippe [1 ]
机构
[1] Univ Lausanne, Dept Plant Mol Biol, Lausanne, Switzerland
[2] Univ Fribourg, Dept Biol, CH-1700 Fribourg, Switzerland
关键词
glutathione; glucosinolates; Spodoptera littoralis; Pieris brassicae; defence gene expression; ascorbate;
D O I
10.1111/j.1365-313X.2008.03545.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plants often respond to pathogen or insect attack by inducing the synthesis of toxic compounds such as phytoalexins and glucosinolates (GS). The Arabidopsis mutant pad2-1 has reduced levels of the phytoalexin camalexin and is known for its increased susceptibility to fungal and bacterial pathogens. We found that pad2-1 is also more susceptible to the generalist insect Spodoptera littoralis but not to the specialist Pieris brassicae. The PAD2 gene encodes a gamma-glutamylcysteine synthetase that is involved in glutathione (GSH) synthesis, and consequently the pad2-1 mutant contains about 20% of the GSH found in wild-type plants. Lower GSH levels of pad2-1 were correlated with reduced accumulation of the two major indole and aliphatic GSs of Arabidopsis, indolyl-3-methyl-GS and 4-methylsulfinylbutyl-GS, in response to insect feeding. This effect was specific to GSH, was not complemented by treatment of pad2-1 with the strong reducing agent dithiothreitol, and was not observed with the ascorbate-deficient mutant vtc1-1. In contrast to the jasmonate-insensitive mutant coi1-1, expression of insect-regulated and GS biosynthesis genes was not affected in pad2-1. Our data suggest a crucial role for GSH in GS biosynthesis and insect resistance.
引用
收藏
页码:774 / 786
页数:13
相关论文
共 66 条
[1]   A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae [J].
Agrawal, AA ;
Kurashige, NS .
JOURNAL OF CHEMICAL ECOLOGY, 2003, 29 (06) :1403-1415
[2]   CYP83B1, a cytochrome P450 at the metabolic branch paint in auxin and indole glucosinolate biosynthesis in Arabidopsis [J].
Bak, S ;
Tax, FE ;
Feldmann, KA ;
Galbraith, DW ;
Feyereisen, R .
PLANT CELL, 2001, 13 (01) :101-111
[3]   The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis [J].
Bak, S ;
Feyereisen, R .
PLANT PHYSIOLOGY, 2001, 127 (01) :108-118
[4]   Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense [J].
Barth, C ;
Jander, G .
PLANT JOURNAL, 2006, 46 (04) :549-562
[5]  
Bartlet E, 1999, ENTOMOL EXP APPL, V91, P163, DOI 10.1023/A:1003661626234
[6]   Evolution of feeding behavior in insect herbivores - Success seen as different ways to eat without being eaten [J].
Bernays, EA .
BIOSCIENCE, 1998, 48 (01) :35-44
[7]   Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis [J].
Bodenhausen, Natacha ;
Reymond, Philippe .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2007, 20 (11) :1406-1420
[8]   The enzymic and chemically induced decomposition of glucosinolates [J].
Bones, Atle M. ;
Rossiter, John T. .
PHYTOCHEMISTRY, 2006, 67 (11) :1053-1067
[9]   Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora [J].
Brader, G ;
Tas, É ;
Palva, ET .
PLANT PHYSIOLOGY, 2001, 126 (02) :849-860
[10]   Altering glucosinolate profiles modulates disease resistance in plants [J].
Brader, Gunter ;
Mikkelsen, Michael Dalgaard ;
Halkier, Barbara Ann ;
Palva, E. Tapio .
PLANT JOURNAL, 2006, 46 (05) :758-767