Mutagenic and epigenetic effects of DNA methylation

被引:178
作者
Gonzalgo, ML [1 ]
Jones, PA [1 ]
机构
[1] UNIV SO CALIF, SCH MED,DEPT BIOCHEM & MOL BIOL,UROL CANC RES LAB, NORRIS COMPREHENS CANC CTR, LOS ANGELES, CA 90033 USA
关键词
DNA methylation; transition mutation; DNA methyltransferase; tumor suppressor gene; p53; p16;
D O I
10.1016/S1383-5742(96)00047-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Tumorigenesis begins with the disregulated growth of an abnormal cell that has acquired the ability to divide more rapidly than its normal counterparts (Nowell, P.C. (1976) Science, 194, 23-28 [1]). Alterations in global levels and regional changes in the patterns of DNA methylation are among the earliest and most frequent events known to occur in human cancers (Feinberg and Vogelstein (1983) Nature, 301, 89-92 ([2]), Gama-Sosa, M.A. et al. (1983) Nucleic Acids Res., 11, 6883-6894 ([3]); Jones, P.A. (1986) Cancer Res., 46, 461-466 [4]). These changes in methylation may impair the proper expression and/or function of cell-cycle regulatory genes and thus confer a selective growth advantage to affected cells. Developments in the field of cancer research over the past few years have led to an increased understanding of the role DNA methylation may play in tumorigenesis. Many of these studies have investigated two major mechanisms by which DNA methylation may lead to aberrant cell cycle control: (1) through the generation of transition mutations via deamination-driven events resulting in the inactivation of tumor suppressor genes, or (2) by altering levels of gene expression through epigenetic effects at CpG islands. The mechanisms by which the normal function of growth regulatory genes may become affected by the mutagenic and epigenetic properties of DNA methylation will be discussed in the framework of recent discoveries in the field.
引用
收藏
页码:107 / 118
页数:12
相关论文
共 79 条
[1]   HIGH-LEVELS OF DENOVO METHYLATION AND ALTERED CHROMATIN STRUCTURE AT CPG ISLANDS IN CELL-LINES [J].
ANTEQUERA, F ;
BOYES, J ;
BIRD, A .
CELL, 1990, 62 (03) :503-514
[2]   PARENTAL IMPRINTING OF THE MOUSE H19 GENE [J].
BARTOLOMEI, MS ;
ZEMEL, S ;
TILGHMAN, SM .
NATURE, 1991, 351 (6322) :153-155
[3]  
BENDER C, UNPUB ACTIVATION DOR
[4]   THE ESSENTIALS OF DNA METHYLATION [J].
BIRD, A .
CELL, 1992, 70 (01) :5-8
[5]   CPG-RICH ISLANDS AND THE FUNCTION OF DNA METHYLATION [J].
BIRD, AP .
NATURE, 1986, 321 (6067) :209-213
[6]   DNA METHYLATION INHIBITS TRANSCRIPTION INDIRECTLY VIA A METHYL-CPG BINDING-PROTEIN [J].
BOYES, J ;
BIRD, A .
CELL, 1991, 64 (06) :1123-1134
[7]   RATES OF P16(MTS1) MUTATIONS IN PRIMARY TUMORS WITH 9P LOSS [J].
CAIRNS, P ;
MAO, L ;
MERLO, A ;
LEE, DJ ;
SCHWAB, D ;
EBY, Y ;
TOKINO, K ;
VANDERRIET, P ;
BLAUGRUND, JE ;
SIDRANSKY, D .
SCIENCE, 1994, 265 (5170) :415-416
[8]   DNA METHYLATION AND GENE ACTIVITY [J].
CEDAR, H .
CELL, 1988, 53 (01) :3-4
[9]   CPNPG METHYLATION IN MAMMALIAN-CELLS [J].
CLARK, SJ ;
HARRISON, J ;
FROMMER, M .
NATURE GENETICS, 1995, 10 (01) :20-27
[10]   CYTOSINE METHYLATION AND THE FATE OF CPG DINUCLEOTIDES IN VERTEBRATE GENOMES [J].
COOPER, DN ;
KRAWCZAK, M .
HUMAN GENETICS, 1989, 83 (02) :181-188