Ancient origin of elicitin gene clusters in Phytophthora genomes

被引:115
作者
Jiang, RHY [1 ]
Tyler, BM
Whisson, SC
Hardham, AR
Govers, F
机构
[1] Univ Wageningen & Res Ctr, Phytopathol Lab, Wageningen, Netherlands
[2] Virginia Polytech Inst & State Univ, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA
[3] Scottish Crop Res Inst, Plant Pathogen Interact Programme, Dundee DD2 5DA, Scotland
[4] Australian Natl Univ, Res Sch Biol Sci, Plant Cell Biol Grp, Canberra, ACT 2601, Australia
关键词
elicitin; Phytophthora; molecular phylogeny;
D O I
10.1093/molbev/msj039
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The genus Phytophthora belongs to the oomycetes in the eukaryotic stramenopile lineage and is comprised of over 65 species that are all destructive plant pathogens on a wide range of dicotyledons. Phytophthora produces elicitins (ELIs), a group of extracellular elicitor proteins that cause a hypersensitive response in tobacco. Database mining revealed several new classes of elicitin-like (ELL) sequences with diverse elicitin domains in Phytophthora infestans, Phytophthora sojae, Phytophthora brassicae, and Phytophthora ramorum. ELIs and ELLs were shown to be unique to Phytophthora and Pythium species. They are ubiquitous among Phytophthora species and belong to one of the most highly conserved and complex protein families in the Phytophthora genus. Phylogeny construction with elicitin domains derived from 156 ELIs and ELLs showed that most of the diversified family members existed prior to divergence of Phytophthora species from a common ancestor. Analysis to discriminate diversifying and purifying selection showed that all 17 ELI and ELL clades are under purifying selection. Within highly similar ELI groups there was no evidence for positively selected amino acids suggesting that purifying selection contributes to the continued existence of this diverse protein family. Characteristic cysteine spacing patterns were found for each phylogenetic clade. Except for the canonical clade ELI-1, ELIs and ELLs possess C-terminal domains of variable length, many of which have a high threonine, serine, or proline content suggesting an association with the cell wall. In addition, some ELIs and ELLs have a predicted glycosylphosphatidylinositol site suggesting anchoring of the C-terminal domain to the cell membrane. The eli and ell genes belonging to different clades are clustered in the genomes. Overall, eli and ell genes are expressed at different levels and in different life cycle stages but those sharing the same phylogenetic clade appear to have similar expression patterns.
引用
收藏
页码:338 / 351
页数:14
相关论文
共 61 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   The genome of the diatom Thalassiosira pseudonana:: Ecology, evolution, and metabolism [J].
Armbrust, EV ;
Berges, JA ;
Bowler, C ;
Green, BR ;
Martinez, D ;
Putnam, NH ;
Zhou, SG ;
Allen, AE ;
Apt, KE ;
Bechner, M ;
Brzezinski, MA ;
Chaal, BK ;
Chiovitti, A ;
Davis, AK ;
Demarest, MS ;
Detter, JC ;
Glavina, T ;
Goodstein, D ;
Hadi, MZ ;
Hellsten, U ;
Hildebrand, M ;
Jenkins, BD ;
Jurka, J ;
Kapitonov, VV ;
Kröger, N ;
Lau, WWY ;
Lane, TW ;
Larimer, FW ;
Lippmeier, JC ;
Lucas, S ;
Medina, M ;
Montsant, A ;
Obornik, M ;
Parker, MS ;
Palenik, B ;
Pazour, GJ ;
Richardson, PM ;
Rynearson, TA ;
Saito, MA ;
Schwartz, DC ;
Thamatrakoln, K ;
Valentin, K ;
Vardi, A ;
Wilkerson, FP ;
Rokhsar, DS .
SCIENCE, 2004, 306 (5693) :79-86
[3]   An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm [J].
Armstrong, MR ;
Whisson, SC ;
Pritchard, L ;
Bos, JIB ;
Venter, E ;
Avrova, AO ;
Rehmany, AP ;
Böhme, U ;
Brooks, K ;
Cherevach, I ;
Hamlin, N ;
White, B ;
Frasers, A ;
Lord, A ;
Quail, MA ;
Churcher, C ;
Hall, N ;
Berriman, M ;
Huang, S ;
Kamoun, S ;
Beynon, JL ;
Birch, PRJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (21) :7766-7771
[4]   PROSITE - A DICTIONARY OF SITES AND PATTERNS IN PROTEINS [J].
BAIROCH, A .
NUCLEIC ACIDS RESEARCH, 1991, 19 :2241-2245
[5]   The deep roots of eukaryotes [J].
Baldauf, SL .
SCIENCE, 2003, 300 (5626) :1703-1706
[6]   From elicitins to lipid-transfer proteins:: a new insight in cell signalling involved in plant defence mechanisms [J].
Blein, JP ;
Coutos-Thévenot, P ;
Marion, D ;
Ponchet, M .
TRENDS IN PLANT SCIENCE, 2002, 7 (07) :293-296
[7]   Crystal structure of a fungal elicitor secreted by Phytophthora cryptogea, a member of a novel class of plant necrotic proteins [J].
Boissy, G ;
deLaFortelle, E ;
Kahn, R ;
Huet, JC ;
Bricogne, G ;
Pernollet, JC ;
Brunie, S .
STRUCTURE, 1996, 4 (12) :1429-1439
[8]   The 2.1 Å structure of an elicitin-ergosterol complex:: A recent addition to the Sterol Carrier Protein family [J].
Boissy, G ;
O'Donohue, M ;
Gaudemer, O ;
Perez, V ;
Pernollet, JC ;
Brunie, S .
PROTEIN SCIENCE, 1999, 8 (06) :1191-1199
[9]   A lipid transfer protein binds to a receptor involved in the control of plant defence responses [J].
Buhot, N ;
Douliez, JP ;
Jacquemard, A ;
Marion, D ;
Tran, V ;
Maume, BF ;
Milat, ML ;
Ponchet, M ;
Mikès, V ;
Kader, JC ;
Blein, JP .
FEBS LETTERS, 2001, 509 (01) :27-30
[10]   Plant cell wall proteins [J].
Cassab, GI .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1998, 49 :281-309