Deadenylation is a widespread effect of miRNA regulation

被引:312
作者
Eulalio, Ana [1 ]
Huntzinger, Eric [1 ]
Nishihara, Tadashi [1 ]
Rehwinkel, Jan [1 ]
Fauser, Maria [1 ]
Izaurralde, Elisa [1 ]
机构
[1] Max Planck Inst Dev Biol, D-72076 Tubingen, Germany
关键词
Argonaute; deadenylation; decapping; GW182; miRNAs; mRNA decay; silencing; translational repression; MEDIATED TRANSLATIONAL REPRESSION; MESSENGER-RNA DEADENYLATION; SECONDARY STRUCTURE; PROTEIN-SYNTHESIS; LET-7; MICRORNA; C-ELEGANS; INITIATION; GENE; ARGONAUTE; TARGET;
D O I
10.1261/rna.1399509
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
miRNAs silence gene expression by repressing translation and/or by promoting mRNA decay. In animal cells, degradation of partially complementary miRNA targets occurs via deadenylation by the CAF1-CCR4-NOT1 deadenylase complex, followed by decapping and subsequent exonucleolytic digestion. To determine how generally miRNAs trigger deadenylation, we compared mRNA expression profiles in D. melanogaster cells depleted of AGO1, CAF1, or NOT1. We show that similar to 60% of AGO1 targets are regulated by CAF1 and/or NOT1, indicating that deadenylation is a widespread effect of miRNA regulation. However, neither a poly(A) tail nor mRNA circularization are required for silencing, because mRNAs whose 3' ends are generated by a self-cleaving ribozyme are also silenced in vivo. We show further that miRNAs trigger mRNA degradation, even when binding by 40S ribosomal subunits is inhibited in cis. These results indicate that miRNAs promote mRNA decay by altering mRNP composition and/or conformation, rather than by directly interfering with the binding and function of ribosomal subunits.
引用
收藏
页码:21 / 32
页数:12
相关论文
共 53 条
[1]   Cotranscriptional processing of Drosophila histone mRNAs [J].
Adamson, TE ;
Price, DH .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (12) :4046-4055
[2]   Comparison of siRNA-induced off-target RNA and protein effects [J].
Aleman, Lourdes M. ;
Doench, John ;
Sharp, Phillip A. .
RNA, 2007, 13 (03) :385-395
[3]   The impact of microRNAs on protein output [J].
Baek, Daehyun ;
Villen, Judit ;
Shin, Chanseok ;
Camargo, Fernando D. ;
Gygi, Steven P. ;
Bartel, David P. .
NATURE, 2008, 455 (7209) :64-U38
[4]   Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation [J].
Bagga, S ;
Bracht, J ;
Hunter, S ;
Massirer, K ;
Holtz, J ;
Eachus, R ;
Pasquinelli, AE .
CELL, 2005, 122 (04) :553-563
[5]   MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay [J].
Behm-Ansmant, I. ;
Rehwinkel, J. ;
Izaurralde, E. .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 2006, 71 :523-530
[6]   MRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes [J].
Behm-Ansmant, Isabelle ;
Rehwinkel, Jan ;
Doerks, Tobias ;
Stark, Alexander ;
Bork, Peer ;
Izaurralde, Elisa .
GENES & DEVELOPMENT, 2006, 20 (14) :1885-1898
[7]   Relief of microRNA-mediated translational repression in human cells subjected to stress [J].
Bhattacharyya, Suvendra N. ;
Habermacher, Regula ;
Martine, Ursula ;
Closs, Ellen I. ;
Filipowicz, Witold .
CELL, 2006, 125 (06) :1111-1124
[8]   MicroRNA functions [J].
Bushati, Natascha ;
Cohen, Stephen M. .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2007, 23 :175-205
[9]  
Chendrimada TP, 2007, NATURE, V447, P823, DOI 10.1038/nature05841
[10]   Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54 [J].
Chu, Chia-ying ;
Rana, Tariq M. .
PLOS BIOLOGY, 2006, 4 (07) :1122-1136