Electronic transport in extended systems: Application to carbon nanotubes

被引:422
作者
Nardelli, MB [1 ]
机构
[1] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
关键词
D O I
10.1103/PhysRevB.60.7828
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present an efficient approach to describe the electronic transport properties of extended systems. The method is based on the surface Green's function matching formalism and combines the iterative calculation of transfer matrices with the Landauer formula for the coherent conductance. The scheme is applicable to any general Hamiltonian that can be described within a localized orbital basis. As illustrative examples, we calculate transport properties for various ideal and mechanically deformed carbon nanotubes using realistic orthogonal and nonorthogonal tight-binding models. In particular, we observe that bent carbon nanotubes maintain their basic electrical properties even in the presence of large mechanical deformations.
引用
收藏
页码:7828 / 7833
页数:6
相关论文
共 37 条
[1]   Conductance of carbon nanotubes with disorder: A numerical study [J].
Anantram, MP ;
Govindan, TR .
PHYSICAL REVIEW B, 1998, 58 (08) :4882-4887
[2]   Aharonov-Bohm oscillations in carbon nanotubes [J].
Bachtold, A ;
Strunk, C ;
Salvetat, JP ;
Bonard, JM ;
Forró, L ;
Nussbaumer, T ;
Schönenberger, C .
NATURE, 1999, 397 (6721) :673-675
[3]  
BEENAKKER CWJ, 1991, SOLID STATE PHYS, V44, P1
[4]   Multiprobe transport experiments on individual single-wall carbon nanotubes [J].
Bezryadin, A ;
Verschueren, ARM ;
Tans, SJ ;
Dekker, C .
PHYSICAL REVIEW LETTERS, 1998, 80 (18) :4036-4039
[5]   HYBRIDIZATION EFFECTS AND METALLICITY IN SMALL RADIUS CARBON NANOTUBES [J].
BLASE, X ;
BENEDICT, LX ;
SHIRLEY, EL ;
LOUIE, SG .
PHYSICAL REVIEW LETTERS, 1994, 72 (12) :1878-1881
[6]   EMPIRICAL POTENTIAL FOR HYDROCARBONS FOR USE IN SIMULATING THE CHEMICAL VAPOR-DEPOSITION OF DIAMOND FILMS [J].
BRENNER, DW .
PHYSICAL REVIEW B, 1990, 42 (15) :9458-9471
[7]  
BUONGIORNO M, UNPUB
[8]   Electronic properties of carbon nanotubes with polygonized cross sections [J].
Charlier, JC ;
Lambin, P ;
Ebbesen, TW .
PHYSICAL REVIEW B, 1996, 54 (12) :R8377-R8380
[9]   Quantum conductance of carbon nanotubes with defects [J].
Chico, L ;
Benedict, LX ;
Louie, SG ;
Cohen, ML .
PHYSICAL REVIEW B, 1996, 54 (04) :2600-2606
[10]  
CHICOGOMEZ L, COMMUNICATION