Herp is dually regulated by both the endoplasmic reticulum stress-specific branch of the unfolded protein response and a branch that is shared with other cellular stress pathways

被引:140
作者
Ma, YJ
Hendershot, LM
机构
[1] St Jude Childrens Res Hosp, Dept Genet & Tumor Cell Biol, Memphis, TN 38105 USA
[2] Univ Tennessee, Ctr Hlth Sci, Dept Mol Sci, Memphis, TN 38163 USA
关键词
D O I
10.1074/jbc.M313724200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mammalian unfolded protein response (UPR) includes two major branches: one(s) specific to ER stress (Ire1/XBP-1 and ATF6-dependent), and one( s) shared by other cellular stresses (PERK/eIF-2alpha phosphorylation-dependent). Here, we demonstrate that the ER-localized protein Herp represents a second target, in addition to CHOP, that is dually regulated by both the shared and the ER stress-specific branches during UPR activation. For the first time, we are able to assess the contribution of each branch of the UPR in the induction of these targets. We demonstrate that activation of the shared branch of the UPR alone was sufficient to induce Herp and CHOP. ATF4 was not required during ER stress when both branches were used but did contribute significantly to their induction. Conversely, stresses that activated only the shared branch of the UPR were completely dependent on ATF4 for CHOP and Herp induction. Thus, the shared and the ER stress-specific branches of the UPR diverge to regulate two groups of targets, one that is ATF6 and Ire1/XBP-1-dependent, which includes BiP and XBP-1, and another that is eIF-2alpha kinase-dependent, which includes ATF4 and GADD34. The two branches also converge to maximally up-regulate targets like Herp and CHOP. Finally, our studies reveal that a PERK-dependent target other than ATF4 is contributing to the cross-talk between the two branches of the UPR that has previously been demonstrated.
引用
收藏
页码:13792 / 13799
页数:8
相关论文
共 48 条
[1]   Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response [J].
Bertolotti, A ;
Zhang, YH ;
Hendershot, LM ;
Harding, HP ;
Ron, D .
NATURE CELL BIOLOGY, 2000, 2 (06) :326-332
[2]   A pathway distinct from the mammalian unfolded protein response regulates expression of endoplasmic reticulum chaperones in non-stressed cells [J].
Brewer, JW ;
Cleveland, JL ;
Hendershot, LM .
EMBO JOURNAL, 1997, 16 (23) :7207-7216
[3]  
Brostrom CO, 1998, PROG NUCLEIC ACID RE, V58, P79
[4]   IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA [J].
Calfon, M ;
Zeng, HQ ;
Urano, F ;
Till, JH ;
Hubbard, SR ;
Harding, HP ;
Clark, SG ;
Ron, D .
NATURE, 2002, 415 (6867) :92-96
[5]   Analysis of ATF3, a transcription factor induced by physiological stresses and modulated by gadd153/Chop10 [J].
Chen, BPC ;
Wolfgang, CD ;
Hai, TW .
MOLECULAR AND CELLULAR BIOLOGY, 1996, 16 (03) :1157-1168
[6]  
CHOI SY, 1992, J BIOL CHEM, V267, P286
[7]   The eIF-2 alpha kinases and the control of protein synthesis [J].
deHaro, C ;
Mendez, R ;
Santoyo, J .
FASEB JOURNAL, 1996, 10 (12) :1378-1387
[8]   Physical and functional association between GADD153 and CCAAT/enhancer-binding protein beta during cellular stress [J].
Fawcett, TW ;
Eastman, HB ;
Martindale, JL ;
Holbrook, NJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (24) :14285-14289
[9]   Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase [J].
Harding, HP ;
Zhang, YH ;
Ron, D .
NATURE, 1999, 397 (6716) :271-274
[10]   Regulated translation initiation controls stress-induced gene expression in mammalian cells [J].
Harding, HP ;
Novoa, I ;
Zhang, YH ;
Zeng, HQ ;
Wek, R ;
Schapira, M ;
Ron, D .
MOLECULAR CELL, 2000, 6 (05) :1099-1108