Symmetric second order edge elements for triangles and tetrahedra

被引:35
作者
Kameari, A [1 ]
机构
[1] Sci Solut Int Lab Inc, Meguro Ku, Tokyo 1530065, Japan
关键词
edge elements; eigenvalue problems;
D O I
10.1109/20.767224
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new type of second order edge elements for simplexes (triangles and tetrahedra) is proposed. The element is geometrically symmetric and the shape functions are orthogonal to each other in the integrals of the tangential components on edges. The number of nodes and edges are 14 and 24 in a tetrahedral element. The proposed elements are validated by eigenmode calculations in a cavity using newly developed method to solve eigenvalue problems with large matrices. Highly accurate eigenvalues are calculated using the elements.
引用
收藏
页码:1394 / 1397
页数:4
相关论文
共 14 条
[1]   3-DIMENSIONAL ELECTROMAGNETIC-WAVE ANALYSIS USING HIGH-ORDER EDGE ELEMENTS [J].
AHAGON, A ;
KASHIMOTO, T .
IEEE TRANSACTIONS ON MAGNETICS, 1995, 31 (03) :1753-1756
[2]   Comparison of various kinds of edge elements for electromagnetic field analysis [J].
Ahagon, A ;
Fujiwara, K ;
Nakata, T .
IEEE TRANSACTIONS ON MAGNETICS, 1996, 32 (03) :898-901
[3]  
AHAGON A, 1997, COMPUMAG RIO DE JAN
[4]  
AHAGON A, 1998, IEE JAP MARCH, P5
[5]  
BARDI I, 1995, USNC URSI RAD SCI M, P83
[6]   Higher order interpolatory vector bases for computational electromagnetics [J].
Graglia, RD ;
Wilton, DR ;
Peterson, AF .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1997, 45 (03) :329-342
[7]  
Hano M., 1988, Electronics and Communications in Japan, Part 2 (Electronics), V71, P71, DOI 10.1002/ecjb.4420710808
[8]   CALCULATION OF TRANSIENT 3D-EDDY CURRENT USING EDGE-ELEMENTS [J].
KAMEARI, A .
IEEE TRANSACTIONS ON MAGNETICS, 1990, 26 (02) :466-469
[9]   TANGENTIAL VECTOR FINITE-ELEMENTS FOR ELECTROMAGNETIC-FIELD COMPUTATION [J].
LEE, JF ;
SUN, DK ;
CENDES, ZJ .
IEEE TRANSACTIONS ON MAGNETICS, 1991, 27 (05) :4032-4035
[10]   A FINITE-ELEMENT METHOD FOR COMPUTING 3-DIMENSIONAL ELECTROMAGNETIC-FIELDS IN INHOMOGENEOUS-MEDIA [J].
MUR, G ;
DEHOOP, AT .
IEEE TRANSACTIONS ON MAGNETICS, 1985, 21 (06) :2188-2191