Soil Nitrogen Availability and Plant Genotype Modify the Nutrition Strategies of M. truncatula and the Associated Rhizosphere Microbial Communities

被引:35
作者
Zancarini, Anouk [1 ]
Mougel, Christophe [1 ]
Voisin, Anne-Sophie [1 ]
Prudent, Marion [1 ]
Salon, Christophe [1 ]
Munier-Jolain, Nathalie [1 ]
机构
[1] INRA, Agroecol UMR1347, F-21034 Dijon, France
来源
PLOS ONE | 2012年 / 7卷 / 10期
关键词
MEDICAGO-TRUNCATULA; ARABIDOPSIS-THALIANA; N-2; FIXATION; CV JEMALONG; BACTERIAL; GROWTH; FUNGAL; MICROORGANISMS; DIVERSITY; MODEL;
D O I
10.1371/journal.pone.0047096
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Plant and soil types are usually considered as the two main drivers of the rhizosphere microbial communities. The aim of this work was to study the effect of both N availability and plant genotype on the plant associated rhizosphere microbial communities, in relation to the nutritional strategies of the plant-microbe interactions, for six contrasted Medicago truncatula genotypes. The plants were provided with two different nutrient solutions varying in their nitrate concentrations (0 mM and 10 mM). First, the influence of both nitrogen availability and Medicago truncatula genotype on the genetic structure of the soil bacterial and fungal communities was determined by DNA fingerprint using Automated Ribosomal Intergenic Spacer Analysis (ARISA). Secondly, the different nutritional strategies of the plant-microbe interactions were evaluated using an ecophysiological framework. We observed that nitrogen availability affected rhizosphere bacterial communities only in presence of the plant. Furthermore, we showed that the influence of nitrogen availability on rhizosphere bacterial communities was dependent on the different genotypes of Medicago truncatula. Finally, the nutritional strategies of the plant varied greatly in response to a modification of nitrogen availability. A new conceptual framework was thus developed to study plant-microbe interactions. This framework led to the identification of three contrasted structural and functional adaptive responses of plant-microbe interactions to nitrogen availability.
引用
收藏
页数:10
相关论文
共 63 条
[1]  
[Anonymous], 1986, PHYSL GENETICAL ASPE
[2]   The role of root exudates in rhizosphere interations with plants and other organisms [J].
Bais, Harsh P. ;
Weir, Tiffany L. ;
Perry, Laura G. ;
Gilroy, Simon ;
Vivanco, Jorge M. .
ANNUAL REVIEW OF PLANT BIOLOGY, 2006, 57 :233-266
[3]   Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture [J].
Berg, Gabriele .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2009, 84 (01) :11-18
[4]   Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere [J].
Berg, Gabriele ;
Smalla, Kornelia .
FEMS MICROBIOLOGY ECOLOGY, 2009, 68 (01) :1-13
[5]   ARBUSCULAR MYCORRHIZAL INDUCED CHANGES TO PLANT-GROWTH AND ROOT-SYSTEM MORPHOLOGY IN PRUNUS-CERASIFERA [J].
BERTA, G ;
TROTTA, A ;
FUSCONI, A ;
HOOKER, JE ;
MUNRO, M ;
ATKINSON, D ;
GIOVANNETTI, M ;
MORINI, S ;
FORTUNA, P ;
TISSERANT, B ;
GIANINAZZIPEARSON, V ;
GIANINAZZI, S .
TREE PHYSIOLOGY, 1995, 15 (05) :281-293
[6]   Incorporating the soil community into plant population dynamics: the utility of the feedback approach [J].
Bever, JD ;
Westover, KM ;
Antonovics, J .
JOURNAL OF ECOLOGY, 1997, 85 (05) :561-573
[7]   Plant species and functional group effects on abiotic and microbial soil properties and plant-soil feedback responses in two grasslands [J].
Bezemer, T. Martijn ;
Lawson, Clare S. ;
Hedlund, Katarina ;
Edwards, Andrew R. ;
Brook, Alex J. ;
Igual, Jose M. ;
Mortimer, Simon R. ;
Van der Putten, Wim H. .
JOURNAL OF ECOLOGY, 2006, 94 (05) :893-904
[8]   The rhizosphere zoo: An overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors [J].
Buee, M. ;
De Boer, W. ;
Martin, F. ;
van Overbeek, L. ;
Jurkevitch, E. .
PLANT AND SOIL, 2009, 321 (1-2) :189-212
[9]   Medicago truncatula -: a model in the making!: Commentary [J].
Cook, DR .
CURRENT OPINION IN PLANT BIOLOGY, 1999, 2 (04) :301-304
[10]   'Root-food' and the rhizosphere microbial community composition [J].
de Boer, W ;
Kowalchuk, GA ;
van Veen, JA .
NEW PHYTOLOGIST, 2006, 170 (01) :3-6