Structure and electrochemical performance of ZnO/CNT composite as anode material for lithium-ion batteries

被引:96
作者
Abbas, Syed Mustansar [1 ,2 ]
Hussain, Syed Tajammul [1 ]
Ali, Saqib [2 ]
Ahmad, Nisar [3 ]
Ali, Nisar [4 ]
Abbas, Saghir [2 ]
机构
[1] Natl Ctr Phys, Nanosci & Catalysis Div, Islamabad, Pakistan
[2] Quaid i Azam Univ, Dept Chem, Islamabad, Pakistan
[3] Hazara Univ, Dept Chem, Mansehra, Pakistan
[4] Univ Punjab, Dept Phys, Lahore, Pakistan
关键词
NEGATIVE ELECTRODES; NANOWIRE ARRAYS; ZNO; STORAGE; FABRICATION; CAPACITY; ROUTE; OXIDE; TRANSITION; LAYER;
D O I
10.1007/s10853-013-7336-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Metal oxides are well-known potential alternatives to graphite as anode materials of lithium-ion batteries, and they can deliver much higher reversible capacities than graphite even at high current densities. In this study, hexagonal disk-shaped ZnO are synthesized by a facile solution reaction of ZnCl2 and its composite is prepared in the presence of carbon nanotubes (CNTs). The as prepared ZnO/CNT composite has been characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, fourier transform-infrared spectroscopy and Rutherford backscattering spectroscopy. Electrochemical characterization by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic discharge/charge tests demonstrate that the conversion reactions in ZnO and ZnO/CNT electrodes enable reversible capacity of 478 and 602 mAh g(-1), respectively for up to 50 cycles. Our investigation highlights the importance of anchoring of small ZnO particles on CNTs for maximum utilization of electrochemically active ZnO and CNTs for energy storage application in lithium-ion batteries.
引用
收藏
页码:5429 / 5436
页数:8
相关论文
共 49 条
[1]   SnO2/ZnO composite structure for the lithium-ion battery electrode [J].
Ahmad, Mashkoor ;
Shi Yingying ;
Sun, Hongyu ;
Shen, Wanci ;
Zhu, Jing .
JOURNAL OF SOLID STATE CHEMISTRY, 2012, 196 :326-331
[2]   Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes [J].
Ahmad, Mashkoor ;
Shi Yingying ;
Nisar, Amjad ;
Sun, Hongyu ;
Shen, Wanci ;
Wei, Miao ;
Zhu, Jing .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (21) :7723-7729
[3]   Poly(methyl methacrylate) composites prepared by in situ polymerization using organophillic nano-to-submicrometer zinc oxide particles [J].
Anzlovar, Alojz ;
Orel, Zorica Crnjak ;
Zigon, Majda .
EUROPEAN POLYMER JOURNAL, 2010, 46 (06) :1216-1224
[4]   Hidden transition in the "unfreezable water" region of the PVP-water system [J].
de Dood, MJA ;
Kalkman, J ;
Strohhöfer, C ;
Michielsen, J ;
van der Elsken, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (24) :5906-5913
[5]   Tin dioxide/carbon nanotube composites with high uniform SnO2 loading as anode materials for lithium ion batteries [J].
Du, Guodong ;
Zhong, Chao ;
Zhang, Peng ;
Guo, Zaiping ;
Chen, Zhixin ;
Liu, Huakun .
ELECTROCHIMICA ACTA, 2010, 55 (07) :2582-2586
[6]   Single-crystal ZnO cup based on hydrothermal decomposition route [J].
Fu, Ying-Song ;
Du, Xi-Wen ;
Sun, Jing ;
Song, Yun-Feng ;
Liu, Jim .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (10) :3863-3867
[7]   The electrochemical reaction of zinc oxide thin films with lithium [J].
Fu, ZW ;
Huang, F ;
Zhang, Y ;
Chu, Y ;
Qin, QZ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (06) :A714-A720
[8]   General route to vertical ZnO nanowire arrays using textured ZnO seeds [J].
Greene, LE ;
Law, M ;
Tan, DH ;
Montano, M ;
Goldberger, J ;
Somorjai, G ;
Yang, PD .
NANO LETTERS, 2005, 5 (07) :1231-1236
[9]   Microstructured ZnO photoelectrode grown on the sputter-deposited ZnO passivating-layer for improving the photovoltaic performances [J].
Hossain, M. F. ;
Takahashi, T. .
MATERIALS CHEMISTRY AND PHYSICS, 2010, 124 (2-3) :940-945
[10]   Synthesis of uniform hexagonal prismatic ZnO whiskers [J].
Hu, JQ ;
Li, Q ;
Wong, NB ;
Lee, CS ;
Lee, ST .
CHEMISTRY OF MATERIALS, 2002, 14 (03) :1216-1219