Structural basis of target recognition by Atg8/LC3 during selective autophagy

被引:334
作者
Noda, Nobuo N. [2 ]
Kumeta, Hiroyuki [2 ]
Nakatogawa, Hitoshi [1 ,3 ]
Satoo, Kenji [2 ]
Adachi, Wakana [2 ]
Ishii, Junko [1 ,3 ]
Fujioka, Yuko [2 ]
Ohsumi, Yoshinori [1 ]
Inagaki, Fuyuhiko [2 ]
机构
[1] Natl Inst Basic Biol, Mol Cell Biol Div, Okazaki, Aichi 4448585, Japan
[2] Hokkaido Univ, Grad Sch Pharmaceut Sci, Dept Biol Struct, Kita Ku, Sapporo, Hokkaido 0010021, Japan
[3] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan
关键词
D O I
10.1111/j.1365-2443.2008.01238.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Autophagy is a non-selective bulk degradation process in which isolation membranes enclose a portion of cytoplasm to form double-membrane vesicles, called autophagosomes, and deliver their inner constituents to the lytic compartments. Recent studies have also shed light on another mode of autophagy that selectively degrades various targets. Yeast Atg8 and its mammalian homologue LC3 are ubiquitin-like modifiers that are localized on isolation membranes and play crucial roles in the formation of autophagosomes. These proteins are also involved in selective incorporation of specific cargo molecules into autophagosomes, in which Atg8 and LC3 interact with Atg19 and p62, receptor proteins for vacuolar enzymes and disease-related protein aggregates, respectively. Using X-ray crystallography and NMR, we herein report the structural basis for Atg8-Atg19 and LC3-p62 interactions. Remarkably, Atg8 and LC3 were shown to interact with Atg19 and p62, respectively, in a quite similar manner: they recognized the side-chains of Trp and Leu in a four-amino acid motif, WXXL, in Atg19 and p62 using hydrophobic pockets conserved among Atg8 homologues. Together with mutational analyses, our results show the fundamental mechanism that allows Atg8 homologues, in association with WXXL-containing proteins, to capture specific cargo molecules, thereby endowing isolation membranes and/or their assembly machineries with target selectivity.
引用
收藏
页码:1211 / 1218
页数:8
相关论文
共 35 条
[1]   Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome [J].
Baba, M ;
Osumi, M ;
Scott, SV ;
Klionsky, DJ ;
Ohsumi, Y .
JOURNAL OF CELL BIOLOGY, 1997, 139 (07) :1687-1695
[2]   ULTRASTRUCTURAL ANALYSIS OF THE AUTOPHAGIC PROCESS IN YEAST - DETECTION OF AUTOPHAGOSOMES AND THEIR CHARACTERIZATION [J].
BABA, M ;
TAKESHIGE, K ;
BABA, N ;
OHSUMI, Y .
JOURNAL OF CELL BIOLOGY, 1994, 124 (06) :903-913
[3]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[4]   p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death [J].
Bjorkoy, G ;
Lamark, T ;
Brech, A ;
Outzen, H ;
Perander, M ;
Overvatn, A ;
Stenmark, H ;
Johansen, T .
JOURNAL OF CELL BIOLOGY, 2005, 171 (04) :603-614
[5]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[6]   A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole [J].
Darsow, T ;
Rieder, SE ;
Emr, SD .
JOURNAL OF CELL BIOLOGY, 1997, 138 (03) :517-529
[7]   NMRPIPE - A MULTIDIMENSIONAL SPECTRAL PROCESSING SYSTEM BASED ON UNIX PIPES [J].
DELAGLIO, F ;
GRZESIEK, S ;
VUISTER, GW ;
ZHU, G ;
PFEIFER, J ;
BAX, A .
JOURNAL OF BIOMOLECULAR NMR, 1995, 6 (03) :277-293
[8]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132
[9]   Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice [J].
Hara, Taichi ;
Nakamura, Kenji ;
Matsui, Makoto ;
Yamamoto, Akitsugu ;
Nakahara, Yohko ;
Suzuki-Migishima, Rika ;
Yokoyama, Minesuke ;
Mishima, Kenji ;
Saito, Ichiro ;
Okano, Hideyuki ;
Mizushima, Noboru .
NATURE, 2006, 441 (7095) :885-889
[10]   Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA [J].
Herrmann, T ;
Güntert, P ;
Wüthrich, K .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 319 (01) :209-227