Novel three-dimensional NiCo2O4 hierarchitectures: solvothermal synthesis and electrochemical properties

被引:137
作者
An, Cuihua [1 ]
Wang, Yijing [1 ]
Huang, Yanan [1 ]
Xu, Yanan [1 ]
Xu, Changchang [1 ]
Jiao, Lifang [1 ]
Yuan, Huatang [1 ]
机构
[1] Nankai Univ, Tianjin Key Lab Met & Mol Based Mat Chem, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Inst New Energy Mat Chem,Key Lab Adv Energy Mat C, Tianjin 300071, Peoples R China
来源
CRYSTENGCOMM | 2014年 / 16卷 / 03期
基金
高等学校博士学科点专项科研基金;
关键词
SUPERIOR SUPERCAPACITOR PERFORMANCES; LITHIUM STORAGE PROPERTIES; SOL-GEL PROCESS; NICKEL COBALTITE; FACILE SYNTHESIS; INTERCALATED ANIONS; CARBON NANOTUBES; ENERGY-STORAGE; HOLLOW SPHERES; NANOWIRES;
D O I
10.1039/c3ce41768a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Three-dimensional flower-like NiCo2O4 hierarchitectures have been successfully prepared on a large scale via a facile solvothermal method followed by an annealing process. The as-synthesized NiCo2O4 flower-like architectures have uniform diameters of about 500 nm assembled by numerous nanosheets radially grown from the center. The possible growth mechanism of the unique structures has been investigated. Both the poly(vinylpyrrolidone) (PVP) surfactant and the formation of metal glycolate play important roles in the formation of these novel three-dimensional flower-like hierarchitectures. With a large surface specific area of 212.6 m(2) g(-1), this novel NiCo2O4 material exhibited a superior specific capacitance of 1191.2 F g(-1) and 755.2 F g(-1) at current densities of 1 and 10 A g(-1), respectively, which suggests that 63.4% of the capacitance is still retained when the charge-discharge rate is increased from 1 A g(-1) to 10 A g(-1). This superior electrochemical performance of NiCo2O4 as an electrode material for supercapacitors can be ascribed to the synergetic effect of the porous structure and the small diffusion lengths in the nanosheet building blocks. The simple, versatile and cost-effective route reported here may provide a general methodology for the high-yield synthesis of metal cobaltite nanostructures featuring improved properties and structures.
引用
收藏
页码:385 / 392
页数:8
相关论文
共 53 条
[1]   Porous nickel cobaltite nanorods: desired morphology inherited from coordination precursors and improved supercapacitive properties [J].
An, Cuihua ;
Liu, Guang ;
Wang, Yijing ;
Li, Li ;
Qiu, Fangyuan ;
Xu, Yanan ;
Xu, Changchang ;
Wang, Ying ;
Jiao, Lifang ;
Yuan, Huatang .
RSC ADVANCES, 2013, 3 (35) :15382-15388
[2]   Facile synthesis and superior supercapacitor performances of Ni2P/rGO nanoparticles [J].
An, Cuihua ;
Wang, Yijing ;
Wang, Yaping ;
Liu, Guang ;
Li, Li ;
Qiu, Fangyuan ;
Xu, Yanan ;
Jiao, Lifang ;
Yuan, Huatang .
RSC ADVANCES, 2013, 3 (14) :4628-4633
[3]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[4]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[5]   Highly Dispersed RuO2 Nanoparticles on Carbon Nanotubes: Facile Synthesis and Enhanced Supercapacitance Performance [J].
Bi, Rong-Rong ;
Wu, Xing-Long ;
Cao, Fei-Fei ;
Jiang, Ling-Yan ;
Guo, Yu-Guo ;
Wan, Li-Jun .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (06) :2448-2451
[6]   Template-free approach to synthesize hierarchical porous nickel cobalt oxides for supercapacitors [J].
Chang, Jie ;
Sun, Jing ;
Xu, Chaohe ;
Xu, Huan ;
Gao, Lian .
NANOSCALE, 2012, 4 (21) :6786-6791
[7]   Inkjet Printing of Single-Walled Carbon Nanotube/RuO2 Nanowire Supercapacitors on Cloth Fabrics and Flexible Substrates [J].
Chen, Pochiang ;
Chen, Haitian ;
Qiu, Jing ;
Zhou, Chongwu .
NANO RESEARCH, 2010, 3 (08) :594-603
[8]   Porous cobalt oxides with tunable hierarchical morphologies for supercapacitor electrodes [J].
Cheng, J. P. ;
Chen, X. ;
Wu, Jin-Song ;
Liu, F. ;
Zhang, X. B. ;
Dravid, Vinayak P. .
CRYSTENGCOMM, 2012, 14 (20) :6702-6709
[9]  
Du H. M., 2012, NANO RES, P1
[10]   Systematic XPS studies of metal oxides, hydroxides and peroxides [J].
Dupin, JC ;
Gonbeau, D ;
Vinatier, P ;
Levasseur, A .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2000, 2 (06) :1319-1324