Brain Network Analysis From High-Resolution EEG Recordings by the Application of Theoretical Graph Indexes

被引:44
作者
Fallani, F. De Vico [1 ,2 ]
Astolfi, L. [1 ,3 ]
Cincotti, F. [1 ]
Mattia, D. [1 ]
Tocci, A. [1 ]
Salinati, S. [3 ]
Marciani, M. G. [4 ]
Witte, H. [5 ]
Colosimo, A. [6 ]
Babiloni, F. [6 ]
机构
[1] IRCCS Fdn Santa Lucia, I-00179 Rome, Italy
[2] Univ Roma La Sapienza, CISB, I-00186 Rome, Italy
[3] Univ Roma La Sapienza, DIS, I-00185 Rome, Italy
[4] Univ Roma Tor Vergata, Dept Neurosci, I-00133 Rome, Italy
[5] Univ Jena, Inst Med Stat Comp Sci & Documentat, D-07743 Jena, Germany
[6] Univ Roma La Sapienza, Human Physiol & Pharmacol Dept, I-00185 Rome, Italy
关键词
High-resolution electroencephalography (EEG); functional networks; graph theory;
D O I
10.1109/TNSRE.2008.2006196
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The extraction of the salient characteristics from brain connectivity patterns is an open challenging topic since often the estimated cerebral networks have a relative large size and complex structure. Since a graph is a mathematical representation of a network, which is essentially reduced to nodes and connections between them, the use of a theoretical graph approach would extract significant information from the functional brain networks estimated through different neuroiniaging techniques. The present work intends to support the development of the "brain network analysis:" a mathematical tool consisting in a body of indexes based on the graph theory able to improve the comprehension of the complex interactions within the brain. In the present work, we applied for demonstrative purpose some graph indexes to the time-varying networks estimated from a set of high-resolution EEG data in a group of healthy subjects during the performance of a motor task. The comparison with a random benchmark allowed extracting the significant properties of the estimated networks in the representative Alpha (7-12 Hz) band. Altogether, our findings aim at proving how the brain network analysis could reveal important information about the time-frequency dynamics of the functional cortical networks.
引用
收藏
页码:442 / 452
页数:11
相关论文
共 58 条
[1]   A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs [J].
Achard, S ;
Salvador, R ;
Whitcher, B ;
Suckling, J ;
Bullmore, ET .
JOURNAL OF NEUROSCIENCE, 2006, 26 (01) :63-72
[2]   Efficiency and cost of economical brain functional networks [J].
Achard, Sophie ;
Bullmore, Edward T. .
PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (02) :174-183
[3]  
[Anonymous], NEOCORTICAL DYNAMICS
[4]  
[Anonymous], 2004, MEMORY BRAIN DYNAMIC
[5]   Tracking the time-varying cortical connectivity patterns by adaptive multivariate estimators [J].
Astolfi, L. ;
Cincotti, F. ;
Mattia, D. ;
Fallani, F. De Vico ;
Tocci, A. ;
Colosimo, A. ;
Salinari, S. ;
Marciani, M. G. ;
Hesse, W. ;
Witte, H. ;
Ursino, M. ;
Zavaglia, M. ;
Babiloni, F. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (03) :902-913
[6]   Imaging functional brain connectivity patterns from high-resolution EEG and fMRI via graph theory [J].
Astolfi, L. ;
Fallani, F. De Vico ;
Cincotti, F. ;
Mattia, D. ;
Marciani, M. G. ;
Bufalari, S. ;
Salinari, S. ;
Colosimo, A. ;
Ding, L. ;
Edgar, J. C. ;
Heller, W. ;
Miller, G. A. ;
He, B. ;
Babiloni, F. .
PSYCHOPHYSIOLOGY, 2007, 44 (06) :880-893
[7]   Estimation of the cortical connectivity by high-resolution EEG and structural equation modeling: Simulations and application to finger tapping data [J].
Astolfi, L ;
Cincotti, F ;
Babiloni, C ;
Carducci, F ;
Basilisco, A ;
Rossini, PM ;
Salinari, S ;
Mattia, D ;
Cerutti, S ;
Ben Dayan, D ;
Ding, L ;
Ni, Y ;
He, B ;
Babiloni, F .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2005, 52 (05) :757-768
[8]   Comparison of different cortical connectivity estimators for high-resolution EEG recordings [J].
Astolfi, Laura ;
Cincotti, Febo ;
Mattia, Donatella ;
Marciani, M. Grazia ;
Baccala, Luiz A. ;
Fallani, Fabrizio de Vico ;
Salinari, Serenella ;
Ursino, Mauro ;
Zavaglia, Melissa ;
Ding, Lei ;
Edgar, J. Christopher ;
Miller, Gregory A. ;
He, Bin ;
Babiloni, Fabio .
HUMAN BRAIN MAPPING, 2007, 28 (02) :143-157
[9]   High-resolution electro-encephalogram: source estimates of Laplacian-transformed somatosensory-evoked potentials using a realistic subject head model constructed from magnetic resonance images [J].
Babiloni, F ;
Babiloni, C ;
Locche, L ;
Cincotti, F ;
Rossini, PM ;
Carducci, F .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2000, 38 (05) :512-519
[10]   Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function [J].
Babiloni, F ;
Cincotti, F ;
Babiloni, C ;
Carducci, F ;
Mattia, D ;
Astolfi, L ;
Basilisco, A ;
Rossini, PM ;
Ding, L ;
Ni, Y ;
Cheng, J ;
Christine, K ;
Sweeney, J ;
He, B .
NEUROIMAGE, 2005, 24 (01) :118-131