Suppression of murine cardiac allograft arteriopathy by long-term blockade of CD40-CD154 interactions

被引:44
作者
Wang, CY
Mazer, SP
Minamoto, K
Takuma, S
Homma, S
Yellin, M
Chess, L
Fard, A
Kalled, SL
Oz, MC
Pinsky, DJ
机构
[1] Columbia Univ Coll Phys & Surg, Div Cardiol, Dept Med, New York, NY 10032 USA
[2] Columbia Univ Coll Phys & Surg, Div Circulatory Physiol, New York, NY 10032 USA
[3] Biogen Inc, Cambridge, MA 02142 USA
关键词
transplantation; cell adhesion molecules; immunology; rejection;
D O I
10.1161/01.CIR.0000013022.11250.30
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background-The interaction between CD40 on antigen-presenting cells and CD40L on T cells is critical in allograft rejection. CD154 blockade suppresses allograft rejection, but the role of this pathway in allograft vasculopathy remains obscure. Methods and Results-A vascularized murine heterotopic cardiac transplant model was used to test whether perioperative CD154 blockade suppresses allograft vasculopathy or whether long-term CD154 blockade is required to suppress allograft vasculopathy. Perioperative CD154 blockade consisted of MR1 given on days -1, 1, and 3; long-term blockade consisted of MR1 given on days -1, 1, and 3 and continued twice weekly for 8 weeks. Allografts treated with perioperative or long-term CD154 blockade survived indefinitely. Perioperative and long-term treatment with control antibody (Ha4/8) resulted in uniform early rejection. Perioperative CD154 blockade transiently reduced early T-cell and macrophage infiltration in parallel with a transient reduction in endothelial adhesion receptor expression. Although perioperative CD154 blockade prevented allograft failure, it did not reduce allograft vasculopathy; mean neointimal cross-sectional area in perioperative MR1-treated and Ha4/8-treated recipients was 43+/-7% and 50+/-12% , respectively (P=NS). In contrast, mean neointimal cross-sectional area in long-term, MR1-treated recipients was 19+/-3% (P<0.001 versus perioperative MR1). Long-term CD154 blockade also suppressed endothelial E-selectin, P-selectin, and intracellular adhesion molecule-1 expression and improved graft function 3.5-fold versus control (P<0.05). Conclusions-These data show that perioperative CD154 blockade mitigates acute rejection but long-term CD154 blockade may result in decreased allograft endothelial activation and is required to suppress allograft arteriopathy.
引用
收藏
页码:1609 / 1614
页数:6
相关论文
共 21 条
[1]   Noninvasive assessment and necropsy validation of changes in left ventricular mass in ascending aortic banded mice [J].
Fard, A ;
Wang, CY ;
Takuma, S ;
Skopicki, HA ;
Pinsky, DJ ;
Di Tullio, MR ;
Homma, S .
JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, 2000, 13 (06) :582-587
[2]   Early development of accelerated graft coronary artery disease: Risk factors and course [J].
Gag, SZ ;
Hunt, SA ;
Schroeder, JS ;
Alderman, EL ;
Hill, IR ;
Stinson, EB .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 1996, 28 (03) :673-679
[3]   Costimulatory function and expression of CD40 ligand, CD80, and CD86 in vascularized murine cardiac allograft rejection [J].
Hancock, WW ;
Sayegh, MH ;
Zheng, XG ;
Peach, R ;
Linsley, PS ;
Turka, LA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (24) :13967-13972
[4]   CTLA4-Ig and anti-CD4O ligand prevent renal allograft rejection in primates [J].
Kirk, AD ;
Harlan, DM ;
Armstrong, NN ;
Davis, TA ;
Dong, YC ;
Gray, GS ;
Hong, XN ;
Thomas, D ;
Fechner, JH ;
Knechtle, SJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (16) :8789-8794
[5]   Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates [J].
Kirk, AD ;
Burkly, LC ;
Batty, DS ;
Baumgartner, RE ;
Berning, JD ;
Buchanan, K ;
Fechner, JH ;
Germond, RL ;
Kampen, RL ;
Patterson, NB ;
Swanson, SJ ;
Tadaki, DK ;
TenHoor, CN ;
White, L ;
Knechtle, SJ ;
Harlan, DM .
NATURE MEDICINE, 1999, 5 (06) :686-693
[6]   Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways [J].
Larsen, CP ;
Elwood, ET ;
Alexander, DZ ;
Ritchie, SC ;
Hendrix, R ;
TuckerBurden, C ;
Cho, HR ;
Aruffo, A ;
Hollenbaugh, D ;
Linsley, PS ;
Winn, KJ ;
Pearson, TC .
NATURE, 1996, 381 (6581) :434-438
[7]   Reduction of atherosclerosis in mice by inhibition of CD40 signalling [J].
Mach, F ;
Schönbeck, U ;
Sukhova, GK ;
Atkinson, E ;
Libby, P .
NATURE, 1998, 394 (6689) :200-203
[8]   Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: Implications for CD40-CD40 ligand signaling in atherosclerosis [J].
Mach, F ;
Schonbeck, U ;
Sukhova, GK ;
Bourcier, T ;
Bonnefoy, JY ;
Pober, JS ;
Libby, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (05) :1931-1936
[9]   RESTORATION OF THE CAMP 2ND MESSENGER PATHWAY ENHANCES CARDIAC PRESERVATION FOR TRANSPLANTATION IN A HETEROTOPIC RAT MODEL [J].
PINSKY, D ;
OZ, M ;
LIAO, H ;
MORRIS, S ;
BRETT, J ;
SCIACCA, R ;
KARAKURUM, M ;
CAMPAGNE, MV ;
PLATT, J ;
NOWYGROD, R ;
KOGA, S ;
STERN, D .
JOURNAL OF CLINICAL INVESTIGATION, 1993, 92 (06) :2994-3002
[10]   CD40 and CD40 ligand (CD154) are coexpressed on microvessels in vivo in human cardiac allograft rejection [J].
Reul, RM ;
Fang, JC ;
Denton, MD ;
Geehan, C ;
Long, C ;
Mitchell, RN ;
Ganz, P ;
Briscoe, DM .
TRANSPLANTATION, 1997, 64 (12) :1765-1774