Spatial distribution of microbial methane production pathways in temperate zone wetland soils: Stable carbon and hydrogen isotope evidence

被引:149
作者
Hornibrook, ERC
Longstaffe, FJ
Fyfe, WS
机构
[1] Department of Earth Sciences, University of Western Ontario, London
关键词
D O I
10.1016/S0016-7037(96)00368-7
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The identity and distribution of substrates that support CH4 production in wetlands is poorly known at present. Organic compounds are the primary methanogenic precursor at all depths within anoxic wetland soils; however, the distribution of microbial processes by which these compounds are ultimately converted to CH4 is uncertain. Based on stable isotope measurements of CH4 and Sigma CO2 extracted from soil porewaters in two temperate zone wetlands, we present evidence that a systematic spatial distribution of microbial methanogenic pathways can exist in certain anoxic, organic-rich soils. CH4 production by the acetate fermentation pathway is favored in the shallow subsurface, while methanogenesis from the reduction of CO2 with H-2 becomes more predominant in older, less reactive peat at depth. This distribution can account for many of the reported CH4 emission characteristics of wetlands, factors play an important role in controlling the short-term supply of labile substrates to fermentive methanogens in the shallow subsurface where the most intense CH4 production occurs. Predominance of the CO2-reduction pathway at depth may help to explain reports of CH4 with a semifossil age in lower pear layers. Copyright (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:745 / 753
页数:9
相关论文
共 61 条
[1]  
[Anonymous], 1988, BIOL ANAEROBIC MICRO
[2]   CARBON ISOTOPIC COMPOSITION OF DEEP CARBON GASES IN AN OMBROGENOUS PEATLAND, NORTHWESTERN ONTARIO, CANADA [J].
ARAVENA, R ;
WARNER, BG ;
CHARMAN, DJ ;
BELYEA, LR ;
MATHUR, SP ;
DINEL, H .
RADIOCARBON, 1993, 35 (02) :271-276
[3]   GLOBAL DISTRIBUTION OF NATURAL FRESH-WATER WETLANDS AND RICE PADDIES, THEIR NET PRIMARY PRODUCTIVITY, SEASONALITY AND POSSIBLE METHANE EMISSIONS [J].
ASELMANN, I ;
CRUTZEN, PJ .
JOURNAL OF ATMOSPHERIC CHEMISTRY, 1989, 8 (04) :307-358
[4]   HYDROGEN AND CARBON ISOTOPE FRACTIONATION DURING EXPERIMENTAL PRODUCTION OF BACTERIAL METHANE [J].
BALABANE, M ;
GALIMOV, E ;
HERMANN, M ;
LETOLLE, R .
ORGANIC GEOCHEMISTRY, 1987, 11 (02) :115-119
[5]   REVIEW AND ASSESSMENT OF METHANE EMISSIONS FROM WETLANDS [J].
BARTLETT, KB ;
HARRISS, RC .
CHEMOSPHERE, 1993, 26 (1-4) :261-320
[6]   THE CARBON ISOTOPE BIOGEOCHEMISTRY OF ACETATE FROM A METHANOGENIC MARINE SEDIMENT [J].
BLAIR, NE ;
CARTER, WD .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1992, 56 (03) :1247-1258
[7]   AN OMBROTROPHIC BOG AS A METHANE RESERVOIR [J].
Brown, Ann ;
Mathur, S. P. ;
Kushner, D. J. .
GLOBAL BIOGEOCHEMICAL CYCLES, 1989, 3 (03) :205-213
[8]   POSSIBLE INFLUENCE OF HYDROGEN CONCENTRATION ON MICROBIAL METHANE STABLE HYDROGEN ISOTOPIC COMPOSITION [J].
BURKE, RA .
CHEMOSPHERE, 1993, 26 (1-4) :55-67
[9]   SEASONAL-VARIATIONS OF D/H AND C-13/C-12 RATIOS OF MICROBIAL METHANE IN SURFACE SEDIMENTS [J].
BURKE, RA ;
MARTENS, CS ;
SACKETT, WM .
NATURE, 1988, 332 (6167) :829-831
[10]   METHANE FLUX AND STABLE HYDROGEN AND CARBON ISOTOPE COMPOSITION OF SEDIMENTARY METHANE FROM THE FLORIDA EVERGLADES [J].
Burke, Roger, Jr. ;
Barber, Timothy ;
Sackett, William .
GLOBAL BIOGEOCHEMICAL CYCLES, 1988, 2 (04) :329-340