Metabolism of Vertebrate Amino Sugars with N-Glycolyl Groups INTRACELLULAR β-O-LINKED N-GLYCOLYLGLUCOSAMINE (GlcNGc), UDP-GlcNGc, AND THE BIOCHEMICAL AND STRUCTURAL RATIONALE FOR THE SUBSTRATE TOLERANCE OF β-O-LINKED β-N-ACETYLGLUCOSAMINIDASE

被引:18
作者
Macauley, Matthew S. [1 ]
Chan, Jefferson [1 ]
Zandberg, Wesley F. [1 ]
He, Yuan [3 ]
Whitworth, Garrett E. [1 ]
Stubbs, Keith A. [4 ]
Yuzwa, Scott A. [2 ]
Bennet, Andrew J. [1 ]
Varki, Ajit [5 ,6 ]
Davies, Gideon J. [3 ]
Vocadlo, David J. [1 ,2 ]
机构
[1] Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1S6, Canada
[2] Simon Fraser Univ, Dept Mol Biol & Biochem, Burnaby, BC V5A 1S6, Canada
[3] Univ York, Dept Chem, York Struct Biol Lab, York YO10 5DD, N Yorkshire, England
[4] Univ Western Australia, Sch Chem & Biochem, Crawley, WA 6009, Australia
[5] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA
[6] Univ Calif San Diego, Dept Cellular & Mol Med, La Jolla, CA 92093 USA
基金
美国国家卫生研究院; 加拿大自然科学与工程研究理事会; 英国生物技术与生命科学研究理事会; 澳大利亚研究理事会;
关键词
SIALIC ACIDS; CAPILLARY-ELECTROPHORESIS; TETRATRICOPEPTIDE REPEATS; ASSISTED CATALYSIS; NUCLEOTIDE SUGARS; GLCNACASE; MECHANISM; PROTEIN; CELLS; GLYCOSYLATION;
D O I
10.1074/jbc.M112.363721
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The O-GlcNAc modification involves the attachment of single beta-O-linked N-acetylglucosamine residues to serine and threonine residues of nucleocytoplasmic proteins. Interestingly, previous biochemical and structural studies have shown that O-GlcNAcase (OGA), the enzyme that removes O-GlcNAc from proteins, has an active site pocket that tolerates various N-acyl groups in addition to the N-acetyl group of GlcNAc. The remarkable sequence and structural conservation of residues comprising this pocket suggest functional importance. We hypothesized this pocket enables processing of metabolic variants of O-GlcNAc that could be formed due to inaccuracy within the metabolic machinery of the hexosamine biosynthetic pathway. In the accompanying paper (Bergfeld, A. K., Pearce, O. M., Diaz, S. L., Pham, T., and Varki, A. (2012) J. Biol. Chem. 287, 28865-28881), N-glycolylglucosamine (GlcNGc) was shown to be a catabolite of NeuNGc. Here, we show that the hexosamine salvage pathway can convert GlcNGc to UDP-GlcNGc, which is then used to modify proteins with O-GlcNGc. The kinetics of incorporation and removal of O-GlcNGc in cells occur in a dynamic manner on a time frame similar to that of O-GlcNAc. Enzymatic activity of O-GlcNAcase (OGA) toward a GlcNGc glycoside reveals OGA can process glycolyl-containing substrates fairly efficiently. A bacterial homolog (BtGH84) of OGA, from a human gut symbiont, also processes O-GlcNGc substrates, and the structure of this enzyme bound to a GlcNGc-derived species reveals the molecular basis for tolerance and binding of GlcNGc. Together, these results demonstrate that analogs of GlcNAc, such as GlcNGc, are metabolically viable species and that the conserved active site pocket of OGA likely evolved to enable processing of mis-incorporated analogs of O-GlcNAc and thereby prevent their accumulation. Such plasticity in carbohydrate processing enzymes may be a general feature arising from inaccuracy in hexosamine metabolic pathways.
引用
收藏
页码:28882 / 28897
页数:16
相关论文
共 57 条
  • [1] Chemical diversity in the sialic acids and related α-keto acids:: An evolutionary perspective
    Angata, T
    Varki, A
    [J]. CHEMICAL REVIEWS, 2002, 102 (02) : 439 - 469
  • [2] THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY
    BAILEY, S
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 : 760 - 763
  • [3] REVERSIBLE CLEAVAGE OF SIALIC ACIDS WITH ALDOLASE - H-1-NMR INVESTIGATIONS ON STEREOCHEMISTRY, KINETICS AND MECHANISM
    BAUMANN, W
    FREIDENREICH, J
    WEISSHAAR, G
    BROSSMER, R
    FRIEBOLIN, H
    [J]. BIOLOGICAL CHEMISTRY HOPPE-SEYLER, 1989, 370 (02): : 141 - 149
  • [4] Metabolism of Vertebrate Amino Sugars with N-Glycolyl Groups ELUCIDATING THE INTRACELLULAR FATE OF THE NON-HUMAN SIALIC ACID N-GLYCOLYLNEURAMINIC ACID
    Bergfeld, Anne K.
    Pearce, Oliver M. T.
    Diaz, Sandra L.
    Tho Pham
    Varki, Ajit
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (34) : 28865 - 28881
  • [5] Metabolism of Vertebrate Amino Sugars with N-Glycolyl Groups INCORPORATION OF N-GLYCOLYLHEXOSAMINES INTO MAMMALIAN GLYCANS BY FEEDING N-GLYCOLYLGALACTOSAMINE
    Bergfeld, Anne K.
    Pearce, Oliver M. T.
    Diaz, Sandra L.
    Lawrence, Roger
    Vocadlo, David J.
    Choudhury, Biswa
    Esko, Jeffrey D.
    Varki, Ajit
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (34) : 28898 - 28916
  • [6] Catalysis and substrate selection by histone/protein lysine acetyltransferases
    Berndsen, Christopher E.
    Denu, John M.
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2008, 18 (06) : 682 - 689
  • [7] Decreased UDP-GlcNAc levels abrogate proliferation control in EMeg32-deficient cells
    Boehmelt, G
    Wakeham, A
    Elia, A
    Sasaki, T
    Plyte, S
    Potter, J
    Yang, YJ
    Tsang, E
    Ruland, J
    Iscove, NN
    Dennis, JW
    Mak, TW
    [J]. EMBO JOURNAL, 2000, 19 (19) : 5092 - 5104
  • [8] Boomkamp Stephanie D., 2008, V49, P441, DOI 10.1007/978-1-4020-8831-5_17
  • [9] The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics
    Cantarel, Brandi L.
    Coutinho, Pedro M.
    Rancurel, Corinne
    Bernard, Thomas
    Lombard, Vincent
    Henrissat, Bernard
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 : D233 - D238
  • [10] Identification of Asp174 and Asp175 as the key catalytic residues of human O-GlcNAcase by functional analysis of site-directed mutants
    Çetinbas, N
    Macauley, MS
    Stubbs, KA
    Drapala, R
    Vocadlo, DJ
    [J]. BIOCHEMISTRY, 2006, 45 (11) : 3835 - 3844