Hydraulic and carbohydrate changes in experimental drought-induced mortality of saplings in two conifer species

被引:107
作者
Anderegg, William R. L. [1 ,2 ]
Anderegg, Leander D. L. [2 ]
机构
[1] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
[2] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
climate change; ecosystem trajectory; forest mortality; hydraulic conductivity; non-structural carbohydrates; plant physiology; vegetation model; PINYON-JUNIPER WOODLAND; INDUCED TREE MORTALITY; CLIMATE-CHANGE; DIE-OFF; VEGETATION MORTALITY; CARBON-STARVATION; MECHANISMS; FOREST; TRANSPIRATION; CONSEQUENCES;
D O I
10.1093/treephys/tpt016
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Global patterns of drought-induced forest die-off indicate that many forests may be sensitive to climate-driven mortality, but the lack of understanding of how trees and saplings die during drought hinders the projections of die-off, demographic bottlenecks and ecosystem trajectories. In this study, we performed a severe controlled drought experiment on saplings of Pinus edulis Engelm. and Juniperus osteosperma (Torr.) Little, two species that both experienced die-off in a recent 'climate change-type' drought. We examined the roles of carbohydrate and hydraulic changes in multiple tissues as the saplings died. We found that saplings of both species exhibited large degrees of loss of hydraulic conductivity prior to death. Neither species exhibited significant changes in carbohydrate concentrations in any tissue during the relatively short and severe imposed drought. Native hydraulic conductivity successfully predicted the degree of canopy mortality in both species, highlighting the importance of drought characteristics and tree attributes in influencing physiological pathways to mortality. The relationships elucidated here, as well as the differences between our results and previous findings in adult trees, can help inform mortality mechanisms in climate-vegetation models, especially for young trees, and to understand species response to severe drought across ontogeny.
引用
收藏
页码:252 / 260
页数:9
相关论文
共 42 条
  • [1] Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought
    Adams, Henry D.
    Guardiola-Claramonte, Maite
    Barron-Gafford, Greg A.
    Villegas, Juan Camilo
    Breshears, David D.
    Zou, Chris B.
    Troch, Peter A.
    Huxman, Travis E.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (17) : 7063 - 7066
  • [2] A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests
    Allen, Craig D.
    Macalady, Alison K.
    Chenchouni, Haroun
    Bachelet, Dominique
    McDowell, Nate
    Vennetier, Michel
    Kitzberger, Thomas
    Rigling, Andreas
    Breshears, David D.
    Hogg, E. H.
    Gonzalez, Patrick
    Fensham, Rod
    Zhang, Zhen
    Castro, Jorge
    Demidova, Natalia
    Lim, Jong-Hwan
    Allard, Gillian
    Running, Steven W.
    Semerci, Akkin
    Cobb, Neil
    [J]. FOREST ECOLOGY AND MANAGEMENT, 2010, 259 (04) : 660 - 684
  • [3] Consequences of widespread tree Mortality triggered by drought and temperature stress
    Anderegg, William R. L.
    Kane, Jeffrey M.
    Anderegg, Leander D. L.
    [J]. NATURE CLIMATE CHANGE, 2013, 3 (01) : 30 - 36
  • [4] Linking definitions, mechanisms, and modeling of drought-induced tree death
    Anderegg, William R. L.
    Berry, Joseph A.
    Field, Christopher B.
    [J]. TRENDS IN PLANT SCIENCE, 2012, 17 (12) : 693 - 700
  • [5] Infestation and Hydraulic Consequences of Induced Carbon Starvation
    Anderegg, William R. L.
    Callaway, Elizabeth S.
    [J]. PLANT PHYSIOLOGY, 2012, 159 (04) : 1866 - 1874
  • [6] The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off
    Anderegg, William R. L.
    Berry, Joseph A.
    Smith, Duncan D.
    Sperry, John S.
    Anderegg, Leander D. L.
    Field, Christopher B.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (01) : 233 - 237
  • [7] [Anonymous], 1997, REGRESSION MODELS CA
  • [8] Forests and climate change: Forcings, feedbacks, and the climate benefits of forests
    Bonan, Gordon B.
    [J]. SCIENCE, 2008, 320 (5882) : 1444 - 1449
  • [9] Regional vegetation die-off in response to global-change-type drought
    Breshears, DD
    Cobb, NS
    Rich, PM
    Price, KP
    Allen, CD
    Balice, RG
    Romme, WH
    Kastens, JH
    Floyd, ML
    Belnap, J
    Anderson, JJ
    Myers, OB
    Meyer, CW
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (42) : 15144 - 15148
  • [10] Hydraulic Failure Defines the Recovery and Point of Death in Water-Stressed Conifers
    Brodribb, Tim J.
    Cochard, Herve
    [J]. PLANT PHYSIOLOGY, 2009, 149 (01) : 575 - 584