The variational structure of a nonlinear theory for spatial lattices

被引:21
作者
Steigmann, DJ
机构
[1] University of Alberta, Department of Mechanical Engineering, 4-9 Mechanical Engineering Building, Edmonton
关键词
structural lattices; rods; mechanics of solids;
D O I
10.1007/BF00429932
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A theory for spatial lattices is presented in a variational setting and conditions restricting stable deformations are discussed. In particular, new results on the second variation of the energy are established and used to generate pointwise necessary conditions for locally energy-minimizing configurations.
引用
收藏
页码:441 / 455
页数:15
相关论文
共 9 条
[1]  
Antman S. S., 1995, NONLINEAR PROBLEMS E
[2]  
Cannarozzi M., 1985, Meccanica, V20, P136, DOI 10.1007/BF02337632
[3]   KIRCHHOFF THEORY OF RODS [J].
DILL, EH .
ARCHIVE FOR HISTORY OF EXACT SCIENCES, 1992, 44 (01) :1-23
[4]  
EWING GM, 1969, CALCULUS VARIATIONS
[5]  
FRIEDMAN A., 1969, Partial Differential Equations
[6]  
Gantmacher F.R., 1977, THEORY MATRICES, V1
[7]  
Love A. E. H., 2013, TREATISE MATH THEORY, V1
[8]   VARIATIONAL THEORY FOR SPATIAL RODS [J].
STEIGMANN, DJ ;
FAULKNER, MG .
JOURNAL OF ELASTICITY, 1993, 33 (01) :1-26
[9]   VARIATIONAL THEORY OF MOTION OF CURVED, TWISTED AND EXTENSIBLE ELASTIC RODS [J].
TADJBAKHSH, IG ;
LAGOUDAS, DC .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1994, 32 (04) :569-577