The molecular clock of HIV-1 unveiled through analysis of a known transmission history

被引:130
作者
Leitner, T
Albert, J
机构
[1] Los Alamos Natl Lab, Grp T10, Los Alamos, NM 87545 USA
[2] Swedish Inst Infect Dis Control, Dept Clin Virol, SE-17182 Solna, Sweden
关键词
D O I
10.1073/pnas.96.19.10752
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Detailed knowledge about the rate and mode of the genetic variation is vital for understanding how HIV-1 induces disease and develops resistance as well as for studies on the molecular epidemiology and origin of the virus. To unveil the molecular clock of HIV-1 we analyzed a unique set of viruses from a known transmission history with separation times between samples of up to 25 years. The env V3 and p17gag regions of the genome were sequenced, and genetic distances were estimated by using the true tree and a nucleotide substitution model based on a general reversible Markov process with a gamma distribution to account for differences in substitution rates among sites. Linear regression analysis showed that separation times were significantly correlated with synonymous as well as nonsynonymous nucleotide distances in both V3 and p17, giving strong support for the existence of a molecular clock. The estimated rate of nucleotide substitution was 6.7 +/- 2.1 x 10(-3) substitutions/site per year in V3 and 2.7 +/- 0.5 x 10(-3) in p17, Importantly, the regression analyses showed that there was a significant genetic distance at zero divergence times, This pretransmission interval exists because the ramifications in the phylogenetic trees do not correspond to time of transmission, but rather to the coalescence time of the most recent common ancestor of the viruses carried by the transmitter and the recipient. Simulation experiments showed that neither the V3 nor the p17 clocks were overdispersed, which indicates that the introduction of nucleotide substitutions can be described adequately by a simple stochastic Poisson process.
引用
收藏
页码:10752 / 10757
页数:6
相关论文
共 32 条
[1]   Analysis of HIV-1 env gene sequences reveals evidence for a low effective number in the viral population [J].
Brown, AJL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (05) :1862-1865
[2]   HIV POPULATION-DYNAMICS IN-VIVO - IMPLICATIONS FOR GENETIC-VARIATION, PATHOGENESIS, AND THERAPY [J].
COFFIN, JM .
SCIENCE, 1995, 267 (5197) :483-489
[3]   Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene [J].
Dean, M ;
Carrington, M ;
Winkler, C ;
Huttley, GA ;
Smith, MW ;
Allikmets, R ;
Goedert, JJ ;
Buchbinder, SP ;
Vittinghoff, E ;
Gomperts, E ;
Donfield, S ;
Vlahov, D ;
Kaslow, R ;
Saah, A ;
Rinaldo, C ;
Detels, R ;
OBrien, SJ .
SCIENCE, 1996, 273 (5283) :1856-1862
[4]   HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 EVOLUTION IN-VIVO TRACKED BY DNA HETERODUPLEX MOBILITY ASSAYS [J].
DELWART, EL ;
SHEPPARD, HW ;
WALKER, BD ;
GOUDSMIT, J ;
MULLINS, JI .
JOURNAL OF VIROLOGY, 1994, 68 (10) :6672-6683
[5]   Variety of human virus evolution [J].
Fitch, WM .
MOLECULAR PHYLOGENETICS AND EVOLUTION, 1996, 5 (01) :247-258
[6]   MOLECULAR CLOCK OF VIRAL EVOLUTION, AND THE NEUTRAL THEORY [J].
GOJOBORI, T ;
MORIYAMA, EN ;
KIMURA, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (24) :10015-10018
[7]  
HOLLAND JJ, 1992, CURR TOP MICROBIOL, V176, P1
[8]  
*INT UN PUR APPL C, 1966, BIOCHEMISTRY-US, V5, P1445
[9]  
Jukes T. H., 1969, MAMMALIAN PROTEIN ME, P121, DOI DOI 10.1016/B978-1-4832-3211-9.50009-7
[10]  
Kimura Motoo., 1985, The Neutral Theory of Molecular Evolution