Metabolically engineered bacteria for producing hydrogen via fermentation

被引:92
作者
Vardar-Schara, Goenuel [1 ]
Maeda, Toshinari [2 ]
Wood, Thomas K. [2 ,3 ,4 ]
机构
[1] Univ Hawaii, Dept Mol Biosci & Bioengn, Honolulu, HI 96822 USA
[2] Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77843 USA
[3] Texas A&M Univ, Dept Biol, College Stn, TX 77843 USA
[4] Texas A&M Univ, Zachry Dept Civil & Environm Engn, College Stn, TX 77843 USA
来源
MICROBIAL BIOTECHNOLOGY | 2008年 / 1卷 / 02期
关键词
D O I
10.1111/j.1751-7915.2007.00009.x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Hydrogen, the most abundant and lightest element in the universe, has much potential as a future energy source. Hydrogenases catalyse one of the simplest chemical reactions, 2H(+) + 2e(-) <-> H-2, yet their structure is very complex. Biologically, hydrogen can be produced via photosynthetic or fermentative routes. This review provides an overview of microbial production of hydrogen by fermentation (currently the more favourable route) and focuses on biochemical pathways, theoretical hydrogen yields and hydrogenase structure. In addition, several examples of metabolic engineering to enhance fermentative hydrogen production are presented along with some examples of expression of heterologous hydrogenases for enhanced hydrogen production.
引用
收藏
页码:107 / 125
页数:19
相关论文
共 150 条
[1]  
AKKERMAN I, 2003, BIOMETHANE BIOHYDROG, P124
[2]   The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans.: 1.: Light sensitivity and magnetic hyperfine interactions as observed by electron paramagnetic resonance [J].
Albracht, SPJ ;
Roseboom, W ;
Hatchikian, EC .
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2006, 11 (01) :88-101
[3]   A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system [J].
Andrews, SC ;
Berks, BC ;
McClay, J ;
Ambler, A ;
Quail, MA ;
Golby, P ;
Guest, JR .
MICROBIOLOGY-SGM, 1997, 143 :3633-3647
[4]   Production of bioenergy and biochemicals from industrial and agricultural wastewater [J].
Angenent, LT ;
Karim, K ;
Al-Dahhan, MH ;
Domíguez-Espinosa, R .
TRENDS IN BIOTECHNOLOGY, 2004, 22 (09) :477-485
[5]   Augmentation of H2 photoproduction in Rhodopseudomonas palustris by N-heterocyclic aromatic compounds [J].
Archana, A ;
Sasikala, C ;
Ramana, CV .
BIOTECHNOLOGY LETTERS, 2003, 25 (01) :79-82
[6]   Escherichia coli HypA is a zinc metalloprotein with a weak affinity for nickel [J].
Atanassova, A ;
Zamble, DB .
JOURNAL OF BACTERIOLOGY, 2005, 187 (14) :4689-4697
[7]  
AXLEY MJ, 1990, J BIOL CHEM, V265, P18213
[8]   Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:: the Keio collection [J].
Baba, Tomoya ;
Ara, Takeshi ;
Hasegawa, Miki ;
Takai, Yuki ;
Okumura, Yoshiko ;
Baba, Miki ;
Datsenko, Kirill A. ;
Tomita, Masaru ;
Wanner, Barry L. ;
Mori, Hirotada .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) :2006.0008
[9]   The roles of hydrogenases 3 and 4, and the F0F1-ATPase, in H2 production by Escherichia coli at alkaline and acidic pH [J].
Bagramyan, K ;
Mnatsakanyan, N ;
Poladian, A ;
Vassilian, A ;
Trchounian, A .
FEBS LETTERS, 2002, 516 (1-3) :172-178
[10]   RECONSTITUTION AND PROPERTIES OF A COENZYME F420-MEDIATED FORMATE HYDROGENLYASE SYSTEM IN METHANOBACTERIUM-FORMICICUM [J].
BARON, SF ;
FERRY, JG .
JOURNAL OF BACTERIOLOGY, 1989, 171 (07) :3854-3859