Superoxide and Respiratory Coupling in Mitochondria of Insulin-Deficient Diabetic Rats

被引:57
作者
Herlein, Judith A.
Fink, Brian D.
O'Malley, Yunxia
Sivitz, William I.
机构
[1] Univ Iowa, Iowa City, IA 52242 USA
[2] Iowa City Vet Affairs Med Ctr, Iowa City, IA 52242 USA
基金
美国国家卫生研究院;
关键词
ENDOTHELIAL-CELL MITOCHONDRIA; ELECTRON-TRANSPORT CHAIN; OXIDATIVE STRESS; REACTIVE OXYGEN; PROTON LEAK; UNCOUPLING PROTEINS; HEART-MITOCHONDRIA; COMPLEX-I; CATALASE; PHOSPHORYLATION;
D O I
10.1210/en.2008-0404
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Mitochondrial reactive oxygen species have been implicated in both diabetic complications and the progression of the underlying diabetic state. However, it is not clear whether mitochondria of diabetic origin are intrinsically altered to generate excess reactive oxygen species independent of the surrounding diabetic milieu. Mitochondria were isolated from gastrocnemius, heart, and liver of 2-wk and 2-month streptozotocin diabetic rats and controls. We rigidly quantified mitochondrial superoxide, respiration and ATP production, respiratory coupling, the expression of several proteins with antioxidant properties, and the redox state of glutathione. Both fluorescent assessment and electron paramagnetic spectroscopy revealed that superoxide production was unchanged or reduced in the 2-month diabetic mitochondria compared with controls. Kinetic analysis of the proton leak showed that diabetic heart and muscle mitochondria were actually more coupled compared with control despite an approximate 2- to 4-fold increase in uncoupling protein-3 content. Adenine nucleotide translocator type 1 expression was reduced by approximately 50% in diabetic muscle mitochondria. Catalase was significantly up-regulated in muscle and heart tissue and in heart mitochondria, whereas glutathione peroxidase expression was increased in liver mitochondria of diabetic rats. We conclude that gastrocnemius, heart, and liver mitochondria of streptozotocin diabetic rats are not irrevocably altered toward excess superoxide production either by complex I or complex III. Moreover, gastrocnemius and heart mitochondria demonstrate increased, not decreased, respiratory coupling. Mitochondria of insulin-deficient diabetic rats do show signs of adaptation to antecedent oxidative stress manifested as tissue-specific enzyme and uncoupling protein expression but remain remarkably robust with respect to superoxide production. (Endocrinology 150: 46-55, 2009)
引用
收藏
页码:46 / 55
页数:10
相关论文
共 60 条
[1]   Oxidative stress triggers cardiac fibrosis in the heart of diabetic rats [J].
Aragno, Manuela ;
Mastrocola, Raffaella ;
Alloatti, Giuseppe ;
Vercellinatto, Ilenia ;
Bardini, Paola ;
Geuna, Stefano ;
Catalano, Maria Graziella ;
Danni, Oliviero ;
Boccuzzi, Giuseppe .
ENDOCRINOLOGY, 2008, 149 (01) :380-388
[2]   Uncoupling proteins 2 and 3 - Potential regulators of mitochondrial energy metabolism [J].
Boss, O ;
Hagen, T ;
Lowell, BB .
DIABETES, 2000, 49 (02) :143-156
[3]   Mitochondrial energetics in the heart in obesity-related diabetes - Direct evidence for increased uncoupled respiration and activation of uncoupling proteins [J].
Boudina, Sihem ;
Sena, Sandra ;
Theobald, Heather ;
Sheng, Xiaoming ;
Wright, Jordan J. ;
Hu, Xia Xuan ;
Aziz, Salwa ;
Johnson, Josie I. ;
Bugger, Heiko ;
Zaha, Vlad G. ;
Abel, E. Dale .
DIABETES, 2007, 56 (10) :2457-2466
[4]   Diabetic cardiomyopathy revisited [J].
Boudina, Sihem ;
Abel, E. Dale .
CIRCULATION, 2007, 115 (25) :3213-3223
[5]   The significance and mechanism of mitochondrial proton conductance [J].
Brand, MD ;
Brindle, KM ;
Buckingham, JA ;
Harper, JA ;
Rolfe, DFS ;
Stuart, JA .
INTERNATIONAL JOURNAL OF OBESITY, 1999, 23 (Suppl 6) :S4-S11
[6]   PROTON-ELECTRON STOICHIOMETRY OF MITOCHONDRIAL COMPLEX-I ESTIMATED FROM THE EQUILIBRIUM THERMODYNAMIC FORCE RATIO [J].
BROWN, GC ;
BRAND, MD .
BIOCHEMICAL JOURNAL, 1988, 252 (02) :473-479
[7]   Type 1 Diabetic Akita Mouse Hearts Are Insulin Sensitive but Manifest Structurally Abnormal Mitochondria That Remain Coupled Despite Increased Uncoupling Protein 3 [J].
Bugger, Heiko ;
Boudina, Sihem ;
Hu, Xiao Xuan ;
Tuinei, Joseph ;
Zaha, Vlad G. ;
Theobald, Heather A. ;
Yun, Ui Jeong ;
McQueen, Alfred P. ;
Wayment, Benjamin ;
Litwin, Sheldon E. ;
Abel, E. Dale .
DIABETES, 2008, 57 (11) :2924-2932
[8]   UCP2 and UCP3 rise in starved rat skeletal muscle but mitochondrial proton conductance is unchanged [J].
Cadenas, S ;
Buckingham, JA ;
Samec, S ;
Seydoux, J ;
Din, N ;
Dulloo, AG ;
Brand, MD .
FEBS LETTERS, 1999, 462 (03) :257-260
[9]   Sodium palmitate induces partial mitochondrial uncoupling and reactive oxygen species in rat pancreatic islets in vitro [J].
Carlsson, C ;
Borg, LAH ;
Welsh, N .
ENDOCRINOLOGY, 1999, 140 (08) :3422-3428
[10]   New insights on oxidative stress and diabetic complications may lead to a "causal" antioxidant therapy [J].
Ceriello, A .
DIABETES CARE, 2003, 26 (05) :1589-1596