Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites

被引:178
作者
Berta, M
Lindsay, C
Pans, G
Camino, G
机构
[1] Univ Turin, Dipartimento Chim, IFM, I-10124 Turin, Italy
[2] Huntsman Polyurethanes, B-3078 Everberg, Belgium
关键词
polyurethane; nanocomposites; fire retardance; thermal behaviour; thermal stability; intumescence;
D O I
10.1016/j.polymdegradstab.2005.05.027
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The effect of polyol molecular weight and functionality on nanodispersion of clay in PU/clay nanocomposites and the investigation of their thermal and combustion properties are reported and discussed. Lamellar elastomer polyurethane nanocomposites were synthesized using polyols with different molecular weight and functionality and according to these parameters they show several degrees of dispersion which affect their thermal and combustion behaviour. A barrier effect of clay layer is shown in TGA experiments by a delay of thermal degradation products release in nanocomposite materials compared to the virgin polymer; this barrier effect also leads to formation of char during combustion which lowers the peak of rate of heat release in cone calorimeter tests and eliminates fire-induced dripping of the nanocomposite sample during UL 94 test. However, in order to achieve non-burning behaviour nanocomposite technology must be combined with conventional flame retardant technology. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1179 / 1191
页数:13
相关论文
共 52 条
[1]   Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials [J].
Alexandre, Michael ;
Dubois, Philippe .
Materials Science and Engineering: R: Reports, 2000, 28 (1-2) :1-63
[2]   HEAT RELEASE RATE - THE SINGLE MOST IMPORTANT VARIABLE IN FIRE HAZARD [J].
BABRAUSKAS, V ;
PEACOCK, RD .
FIRE SAFETY JOURNAL, 1992, 18 (03) :255-272
[3]  
Babrauskas V., 1995, Fire Mater, V19, P243, DOI [10.1002/fam.810190602, DOI 10.1002/FAM.810190602]
[4]   Modeling the interactions between polymers and clay surfaces through self-consistent field theory [J].
Balazs, AC ;
Singh, C ;
Zhulina, E .
MACROMOLECULES, 1998, 31 (23) :8370-8381
[5]   Flame retardant properties of EVA-nanocomposites and improvements by combination of nanofillers with aluminium trihydrate [J].
Beyer, G .
FIRE AND MATERIALS, 2001, 25 (05) :193-197
[6]   Recent advances for intumescent polymers [J].
Bourbigot, S ;
Le Bras, M ;
Duquesne, S ;
Rochery, M .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2004, 289 (06) :499-511
[7]  
CAMINO G, 228 ACS NAT M 2004 P
[8]  
Chang JH, 2002, J POLYM SCI POL PHYS, V40, P670, DOI 10.1002/polb.10124
[9]   Synthesis and characterization of novel segmented polyurethane/clay nanocomposites [J].
Chen, TK ;
Tien, YI ;
Wei, KH .
POLYMER, 2000, 41 (04) :1345-1353
[10]  
Chen TK, 1999, J POLYM SCI POL CHEM, V37, P2225, DOI 10.1002/(SICI)1099-0518(19990701)37:13<2225::AID-POLA37>3.0.CO