Internal dynamics of green fluorescent protein

被引:64
作者
Helms, V
Straatsma, TP
McCammon, JA
机构
[1] Univ Calif San Diego, Dept Biochem & Chem, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA
[3] Pacific NW Lab, Theory Modeling & Simulat Environm Mol Sci Lab, Richland, WA 99352 USA
关键词
D O I
10.1021/jp983120q
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A 1 ns molecular dynamics simulation was performed to study the dynamic behavior of wild-type green fluorescent protein from Aequorea victoria. We find the protein to be remarkably rigid, both overall, because the cylindrical beta-barrel provides a stable framework, but also on an atomic level in the immediate surrounding of the chromophore. Here, a tight H-bond network is formed mainly involving six internal water molecules. The perfect barrel is interrupted only between beta-strands 7 and 8 where contact is made via side chain interactions, and we investigated the dynamic behavior of this region in detail. After ca. 320 ps of simulation, an arginine residue, initially sticking out into solution, folded over the cleft to form a H-bond with a backbone oxygen atom on the opposite strand. This contact appears important for stabilization of the overall protein architecture.
引用
收藏
页码:3263 / 3269
页数:7
相关论文
共 35 条
[1]   ESSENTIAL DYNAMICS OF PROTEINS [J].
AMADEI, A ;
LINSSEN, ABM ;
BERENDSEN, HJC .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (04) :412-425
[2]  
ANCHELL J, 1997, NWCHEM COMPUTATIONAL
[3]  
Angell C. A., 1982, WATER COMPREHENSIVE, V7
[4]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[5]   Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results [J].
Bertolini, D ;
Tani, A .
PHYSICAL REVIEW E, 1997, 56 (04) :4135-4151
[6]   DETERMINING ATOM-CENTERED MONOPOLES FROM MOLECULAR ELECTROSTATIC POTENTIALS - THE NEED FOR HIGH SAMPLING DENSITY IN FORMAMIDE CONFORMATIONAL-ANALYSIS [J].
BRENEMAN, CM ;
WIBERG, KB .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1990, 11 (03) :361-373
[7]   CHEMICAL-STRUCTURE OF THE HEXAPEPTIDE CHROMOPHORE OF THE AEQUOREA GREEN-FLUORESCENT PROTEIN [J].
CODY, CW ;
PRASHER, DC ;
WESTLER, WM ;
PRENDERGAST, FG ;
WARD, WW .
BIOCHEMISTRY, 1993, 32 (05) :1212-1218
[8]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[9]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092
[10]   Deletion mapping of the Aequorea victoria green fluorescent protein [J].
Dopf, J ;
Horiagon, TM .
GENE, 1996, 173 (01) :39-44