Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7

被引:294
作者
Thilmony, R
Underwood, W
He, SY [1 ]
机构
[1] Michigan State Univ, Dept Energy, Plant Res Lab, E Lansing, MI 48824 USA
[2] Michigan State Univ, Genet Grad Program, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA
关键词
coronatine; type III secretion; virulence; effectors; basal defense; PAMP;
D O I
10.1111/j.1365-313X.2006.02725.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Pseudomonas syringae pv. tomato DC3000 ( Pst) is a virulent pathogen that causes disease on tomato and Arabidopsis. The type III secretion system ( TTSS) plays a key role in pathogenesis by translocating virulence effectors from the bacteria into the plant host cell, while the phytotoxin coronatine ( COR) contributes to virulence and disease symptom development. Recent studies suggest that both the TTSS and COR are involved in the suppression of host basal defenses. However, little is known about the interplay between the host gene expression changes associated with basal defenses and the virulence activities of the TTSS and COR during infection. In this study, we used the Affymetrix full genome chip to determine the Arabidopsis transcriptome associated with basal defense to Pst DC3000 hrp mutants and the human pathogenic bacterium Escherichia coli O157: H7. We then used Pst DC3000 virulence mutants to characterize Arabidopsis transcriptional responses to the action of hrp- regulated virulence factors ( e. g. TTSS and COR) during bacterial infection. Additionally, we used bacterial fliC mutants to assess the role of the pathogen- associated molecular pattern flagellin in induction of basal defense- associated transcriptional responses. In total, our global gene expression analysis identified 2800 Arabidopsis genes that are reproducibly regulated in response to bacterial pathogen inoculation. Regulation of these genes provides a molecular signature for Arabidopsis basal defense to plant and human pathogenic bacteria, and illustrates both common and distinct global virulence effects of the TTSS, COR, and possibly other hrp- regulated virulence factors during Pst DC3000 infection.
引用
收藏
页码:34 / 53
页数:20
相关论文
共 113 条
[1]   Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling [J].
Abe, H ;
Urao, T ;
Ito, T ;
Seki, M ;
Shinozaki, K ;
Yamaguchi-Shinozaki, K .
PLANT CELL, 2003, 15 (01) :63-78
[2]   MAP kinase signalling cascade in Arabidopsis innate immunity [J].
Asai, T ;
Tena, G ;
Plotnikova, J ;
Willmann, MR ;
Chiu, WL ;
Gomez-Gomez, L ;
Boller, T ;
Ausubel, FM ;
Sheen, J .
NATURE, 2002, 415 (6875) :977-983
[3]   A CHLOROPLAST LIPOXYGENASE IS REQUIRED FOR WOUND-INDUCED JASMONIC ACID ACCUMULATION IN ARABIDOPSIS [J].
BELL, E ;
CREELMAN, RA ;
MULLET, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (19) :8675-8679
[4]   Pseudomonas syringae phytotoxins:: Mode of action, regulation, and biosynthesis by peptide and polyketide synthetases [J].
Bender, CL ;
Alarcón-Chaidez, F ;
Gross, DC .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1999, 63 (02) :266-+
[5]   Differential expression of a novel gene in response to coronatine, methyl jasmonate, and wounding in the coi1 mutant of Arabidopsis [J].
Benedetti, CE ;
Costa, CL ;
Turcinelli, SR ;
Arruda, P .
PLANT PHYSIOLOGY, 1998, 116 (03) :1037-1042
[6]   COI1-DEPENDENT EXPRESSION OF AN ARABIDOPSIS VEGETATIVE STORAGE PROTEIN IN FLOWERS AND SILIQUES AND IN RESPONSE TO CORONATINE OR METHYL JASMONATE [J].
BENEDETTI, CE ;
XIE, DX ;
TURNER, JG .
PLANT PHYSIOLOGY, 1995, 109 (02) :567-572
[7]   Role of EHEC O157:H7 virulence factors in the activation of intestinal epithelial cell NF-κB and MAP kinase pathways and the upregulated expression of interleukin 8 [J].
Berin, MC ;
Darfeuille-Michaud, A ;
Egan, LJ ;
Miyamoto, Y ;
Kagnoff, MF .
CELLULAR MICROBIOLOGY, 2002, 4 (10) :635-647
[8]   HRP MUTANT OF PSEUDOMONAS-SYRINGAE PV PHASEOLICOLA INDUCES CELL-WALL ALTERATIONS BUT NOT MEMBRANE DAMAGE LEADING TO THE HYPERSENSITIVE REACTION IN LETTUCE [J].
BESTWICK, CS ;
BENNETT, MH ;
MANSFIELD, JW .
PLANT PHYSIOLOGY, 1995, 108 (02) :503-516
[9]   Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis [J].
Borevitz, JO ;
Xia, YJ ;
Blount, J ;
Dixon, RA ;
Lamb, C .
PLANT CELL, 2000, 12 (12) :2383-2393
[10]   Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome [J].
Bray, EA .
PLANT CELL AND ENVIRONMENT, 2002, 25 (02) :153-161