Transport theory for light propagation in biological tissue

被引:60
作者
Kim, AD [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
D O I
10.1364/JOSAA.21.000820
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study light propagation in biological tissue using the radiative transport equation. The Green's function is the fundamental solution to the radiative transport equation from which all other solutions can be computed. We compute the Green's function as an expansion in plane-wave modes. We calculate these plane-wave modes numerically using the discrete-ordinate method. When scattering is sharply peaked, calculating the plane-wave modes for the transport equation is difficult. For that case we replace it with the Fokker-Planck equation since the latter gives a good approximation to the transport equation and requires less work to solve. We calculate the plane-wave modes for the Fokker-Planck equation numerically using a finite-difference approximation. The method of computing the Green's function for it is the same as for the transport equation. We demonstrate the use of the Green's function for the transport and Fokker-Planck equations by computing the point-spread function in a half-space composed of a uniform scattering and absorbing medium. (C) 2004 Optical Society of America.
引用
收藏
页码:820 / 827
页数:8
相关论文
共 6 条
[1]  
CASE KM, 1967, LINEAR TRANSPORT THE
[2]  
CASE KM, 1969, P S APPL MATH, V1, P17
[3]  
ISHIMARU A, 1996, WAVE PROPAGATION SCA
[4]   Light propagation in biological tissue [J].
Kim, AD ;
Keller, JB .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2003, 20 (01) :92-98
[5]   Generalized Fokker-Planck approximations of particle transport with highly forward-peaked scattering [J].
Leakeas, CL ;
Larsen, EW .
NUCLEAR SCIENCE AND ENGINEERING, 2001, 137 (03) :236-250
[6]   AN IMPROVED FOKKER-PLANCK ANGULAR DIFFERENCING SCHEME [J].
MOREL, JE .
NUCLEAR SCIENCE AND ENGINEERING, 1985, 89 (02) :131-136