Mean square convergence of multi-innovation forgetting gradient identification

被引:2
作者
Ding, F [1 ]
Ding, T [1 ]
机构
[1] Tsing Hua Univ, Dept Automat, Beijing 100084, Peoples R China
来源
2001 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING, VOLS I AND II, CONFERENCE PROCEEDINGS | 2001年
关键词
identification; parameter estimation; signal processing;
D O I
10.1109/PACRIM.2001.953663
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a multi-innovation forgetting gradient identification method is studied; and its mean square convergence is analyzed by using stochastic process theory. The analysis indicates that the stationary data can improve accuracy of the parameter estimates, and that a way to choose the forgetting factor is obtained to minimize an upper bound of the parameter estimation error. The multi-innovation forgetting gradient algorithm is capable of reducing the effect of poor data in parameter estimation, having good robustness, and tracking time-varying parameters.
引用
收藏
页码:437 / 440
页数:4
相关论文
共 8 条
[1]  
DING F, 2000, TSINGHUA SCI TECHNOL, V5, P188
[2]  
Ding F., 1996, ACTA AUTOM SIN, V22, P85
[3]  
Ding Feng, 1999, Journal of Tsinghua University (Science and Technology), V39, P83
[4]  
Ding Feng, 1997, Control Theory & Applications, V14, P90
[5]  
Ding Feng, 1999, Control Theory & Applications, V16, P569
[6]  
Ding Feng, 1994, Control Theory & Applications, V11, P634
[7]  
Feng C., 1986, ADAPTIVE CONTROL
[8]  
Goodwin G C., 1984, ADAPTIVE FILTERING P