Blood vessel segmentation methodologies in retinal images - A survey

被引:697
作者
Fraz, M. M. [1 ]
Remagnino, P. [1 ]
Hoppe, A. [1 ]
Uyyanonvara, B. [2 ]
Rudnicka, A. R. [3 ]
Owen, C. G. [3 ]
Barman, S. A. [1 ]
机构
[1] Kingston Univ, Digital Imaging Res Ctr, Fac Sci Engn & Comp, London, England
[2] Thammasat Univ, Sirindhorn Int Inst Technol, Dept Informat Technol, Bangkok, Thailand
[3] Univ London, Div Populat Hlth Sci & Educ, London, England
关键词
Medical imaging; Retinal images; Image segmentation; Blood vessel segmentation; Retinopathy; Survey; FUNDUS IMAGES; MATCHED-FILTER; COLOR IMAGES; RED-FREE; EXTRACTION; ALGORITHM; MODEL; TRACKING; LEVEL; SET;
D O I
10.1016/j.cmpb.2012.03.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Retinal vessel segmentation algorithms are a fundamental component of automatic retinal disease screening systems. This work examines the blood vessel segmentation methodologies in two dimensional retinal images acquired from a fundus camera and a survey of techniques is presented. The aim of this paper is to review, analyze and categorize the retinal vessel extraction algorithms, techniques and methodologies, giving a brief description, highlighting the key points and the performance measures. We intend to give the reader a framework for the existing research; to introduce the range of retinal vessel segmentation algorithms; to discuss the current trends and future directions and summarize the open problems. The performance of algorithms is compared and analyzed on two publicly available databases (DRIVE and STARE) of retinal images using a number of measures which include accuracy, true positive rate, false positive rate, sensitivity, specificity and area under receiver operating characteristic (ROC) curve. (c) 2012 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:407 / 433
页数:27
相关论文
共 133 条
[1]   A COMPUTER METHOD OF UNDERSTANDING OCULAR FUNDUS IMAGES [J].
AKITA, K ;
KUGA, H .
PATTERN RECOGNITION, 1982, 15 (06) :431-443
[2]  
Al-Diri B, 2005, 3 EUR MED BIOL ENG C
[3]   An Active Contour Model for Segmenting and Measuring Retinal Vessels [J].
Al-Diri, Bashir ;
Hunter, Andrew ;
Steel, David .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (09) :1488-1497
[4]   REVIEW - A Reference Data Set for Retinal Vessel Profiles [J].
Al-Diri, Bashir ;
Hunter, Andrew ;
Steel, David ;
Habib, Maged ;
Hudaib, Taghread ;
Berry, Simon .
2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, :2262-+
[5]   An improved matched filter for blood vessel detection of digital retinal images [J].
Al-Rawi, Mohammed ;
Qutaishat, Munib ;
Arrar, Mohammed .
COMPUTERS IN BIOLOGY AND MEDICINE, 2007, 37 (02) :262-267
[6]   Fast retinal vessel tree extraction:: A pixel parallel approach [J].
Alonso-Montes, C. ;
Vilarino, D. L. ;
Dudek, P. ;
Penedo, M. G. .
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2008, 36 (5-6) :641-651
[7]  
Alonso-Montes C., 2005, Proceedings. 9th IEEE International Workshop on Cellular Neural Networks and their Applications (IEEE Cat. No. 05TH8814), P61
[8]  
Amin M., 2010, SOFT COMPUTING FUSIO, P1
[9]  
[Anonymous], 1982, IMAGE ANAL MATH MORP
[10]  
[Anonymous], 2003, AUST PATT REC SOC C, DOI [10.1177/0734242X0302100404, DOI 10.1177/0734242X0302100404]