Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis

被引:321
作者
Xiong, LM [1 ]
Lee, HJ [1 ]
Ishitani, M [1 ]
Zhu, JK [1 ]
机构
[1] Univ Arizona, Dept Plant Sci, Tucson, AZ 85721 USA
关键词
D O I
10.1074/jbc.M109275200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Drought and high salinity induce the expression of many plant genes. To understand the signal transduction mechanisms underlying the activation of these genes, we carried out a genetic screen to isolate Arabidopsis mutants defective in osmotic stress-regulated gene induction. Here we report the isolation, characterization, and cloning of a mutation, los6, which diminished osmotic stress activation of a reporter gene. RNA blot analysis indicates that under osmotic stress the transcript levels for stress-responsive genes such as RD29A, COR15A, KIN1, COR47, RD19, and ADH are lower in los6 plants than in wild type plants. los6 plants were found to have reduced phytohormone abscisic acid (ABA) accumulation and to be allelic to the ABA-deficient mutant, aba1. LOS6/ABA1 encodes a zeaxanthin epoxidase that functions in ABA biosynthesis. Its expression is enhanced by osmotic stress. Furthermore, we found that there exists a positive feedback regulation by ABA on the expression of LOS6/ABA1, which may underscore a quick adaptation strategy for plants under osmotic stress. Similar positive regulation by ABA also exists for other ABA biosynthesis genes AAO3 and LOS5/ABA3 and in certain genetic backgrounds, NCED3. This feedback regulation by ABA is impaired in the ABA-insensitive mutant abi1 but not in abi2. Moreover, the up-regulation of LOS6/ABA1, LOS5/ABA3, AAO3, and NCED3 by osmotic stress is reduced substantially in ABA-deficient mutants. Transgenic plants overexpressing LOS6/ABA1 showed an increased RD29A-LUC expression under osmotic stress. These results suggest that the level of gene induction by osmotic stress is dependent on the dosage of the zeaxanthin epoxidase enzyme.
引用
收藏
页码:8588 / 8596
页数:9
相关论文
共 35 条
[1]   Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion.: Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene [J].
Agrawal, GK ;
Yamazaki, M ;
Kobayashi, M ;
Hirochika, R ;
Miyao, A ;
Hirochika, H .
PLANT PHYSIOLOGY, 2001, 125 (03) :1248-1257
[2]   Expression studies of the zeaxanthin epoxidase gene in Nicotiana plumbaginifolia [J].
Audran, C ;
Borel, C ;
Frey, A ;
Sotta, B ;
Meyer, C ;
Simonneau, T ;
Marion-Poll, A .
PLANT PHYSIOLOGY, 1998, 118 (03) :1021-1028
[3]   MOLECULAR RESPONSES TO WATER-DEFICIT [J].
BRAY, EA .
PLANT PHYSIOLOGY, 1993, 103 (04) :1035-1040
[4]   A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis [J].
Cutler, S ;
Ghassemian, M ;
Bonetta, D ;
Cooney, S ;
McCourt, P .
SCIENCE, 1996, 273 (5279) :1239-1241
[5]   ABSCISIC-ACID-DEFICIENT MUTANTS AT THE ABA GENE LOCUS OF ARABIDOPSIS-THALIANA ARE IMPAIRED IN THE EPOXIDATION OF ZEAXANTHIN [J].
DUCKHAM, SC ;
LINFORTH, RST ;
TAYLOR, IB .
PLANT CELL AND ENVIRONMENT, 1991, 14 (06) :601-606
[6]   Engineering seed dormancy by the modification of zeaxanthin epoxidase gene expression [J].
Frey, A ;
Audran, C ;
Marin, E ;
Sotta, B ;
Marion-Poll, A .
PLANT MOLECULAR BIOLOGY, 1999, 39 (06) :1267-1274
[7]   INCREASED ABSCISIC-ACID BIOSYNTHESIS DURING PLANT DEHYDRATION REQUIRES TRANSCRIPTION [J].
GUERRERO, F ;
MULLET, JE .
PLANT PHYSIOLOGY, 1986, 80 (02) :588-591
[8]   Plant cellular and molecular responses to high salinity [J].
Hasegawa, PM ;
Bressan, RA ;
Zhu, JK ;
Bohnert, HJ .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 2000, 51 :463-499
[9]   Mechanisms of mRNA surveillance in eukaryotes [J].
Hilleren, P ;
Parker, R .
ANNUAL REVIEW OF GENETICS, 1999, 33 :229-260
[10]   The molecular basis of dehydration tolerance in plants [J].
Ingram, J ;
Bartels, D .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1996, 47 :377-403