Introduction of heteroplasmic mitochondrial DNA (mtDNA) from a patient with NARP into two human ρ° cell lines is associated either with selection and maintenance of NARP mutant mtDNA or failure to maintain mtDNA

被引:23
作者
Vergani, L
Rossi, R
Brierley, CH
Hanna, N
Holt, IJ [1 ]
机构
[1] Univ Dundee, Ninewells Med Sch, Dept Mol Pathol, Dundee DD1 9SY, Scotland
[2] Univ Dundee, Ninewells Med Sch, Dept Obstet & Gynaecol, Dundee DD1 9SY, Scotland
[3] Inst Neurol, Dept Clin Neurol, London WC1N 3BG, England
基金
英国医学研究理事会;
关键词
D O I
10.1093/hmg/8.9.1751
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondria from a patient heteroplasmic at nucleotide position 8993 of mitochondrial DNA (mtDNA) were introduced into two human tumour cell lines lacking mtDNA. The donor mitochondria contained between 85 and 95% 8993G:C mtDNA, All detectable mtDNA in the mitochondrially transformed cells contained the pathological 8993G:C mutation 3 months after transformation. These results suggest that 8993G:C mtDNA had a selective advantage over 8993T:A mtDNA in both lung carcinoma and osteosarcoma cell backgrounds. In contrast, two other presumed pathological mtDNA variants were lost in favour of 'wild-type' mtDNA molecules in the same lung carcinoma cell background. Taken together, these findings suggest that the transmission bias of mtDNA variants is dependent upon a combination of nuclear background and mtDNA genotype, A second phenomenon observed was a marked decrease in the growth rate of many putative transformed cell lines after 6 weeks of culturing in selective medium, and in these cell lines mtDNA was not readily detectable by Southern blotting, Restriction endonuclease analysis and sequencing of amplified mtDNA demonstrated that the slow growing cells contained little or no mtDNA, It is concluded that these cells represented transient mitochondrial transformants.
引用
收藏
页码:1751 / 1755
页数:5
相关论文
共 23 条
[1]   SEQUENCE AND ORGANIZATION OF THE HUMAN MITOCHONDRIAL GENOME [J].
ANDERSON, S ;
BANKIER, AT ;
BARRELL, BG ;
DEBRUIJN, MHL ;
COULSON, AR ;
DROUIN, J ;
EPERON, IC ;
NIERLICH, DP ;
ROE, BA ;
SANGER, F ;
SCHREIER, PH ;
SMITH, AJH ;
STADEN, R ;
YOUNG, IG .
NATURE, 1981, 290 (5806) :457-465
[2]   Skewed segregation of the mtDNA nt 8993 (T->G) mutation in human oocytes [J].
Blok, RB ;
Gook, DA ;
Thorburn, DR ;
Dahl, HHM .
AMERICAN JOURNAL OF HUMAN GENETICS, 1997, 60 (06) :1495-1501
[3]  
BODNAR AG, 1993, AM J HUM GENET, V53, P663
[4]  
BOURGERON T, 1993, J BIOL CHEM, V268, P19369
[5]   INVITRO GENETIC TRANSFER OF PROTEIN-SYNTHESIS AND RESPIRATION DEFECTS TO MITOCHONDRIAL DNA-LESS CELLS WITH MYOPATHY-PATIENT MITOCHONDRIA [J].
CHOMYN, A ;
MEOLA, G ;
BRESOLIN, N ;
LAI, ST ;
SCARLATO, G ;
ATTARDI, G .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (04) :2236-2244
[6]   ETHIDIUM BROMIDE INDUCED LOSS OF MITOCHONDRIAL-DNA FROM PRIMARY CHICKEN-EMBRYO FIBROBLASTS [J].
DESJARDINS, P ;
FROST, E ;
MORAIS, R .
MOLECULAR AND CELLULAR BIOLOGY, 1985, 5 (05) :1163-1169
[7]   DIFFERENT CELLULAR BACKGROUNDS CONFER A MARKED ADVANTAGE TO EITHER MUTANT OR WILD-TYPE MITOCHONDRIAL GENOMES [J].
DUNBAR, DR ;
MOONIE, PA ;
JACOBS, HT ;
HOLT, IJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6562-6566
[8]   Complex I deficiency is associated with 3243G:C mitochondrial DNA in osteosarcoma cell cybrids [J].
Dunbar, DR ;
Moonie, PA ;
Zeviani, M ;
Holt, IJ .
HUMAN MOLECULAR GENETICS, 1996, 5 (01) :123-129
[9]   MITOCHONDRIAL DNA-LIKE SEQUENCES IN THE HUMAN NUCLEAR GENOME - CHARACTERIZATION AND IMPLICATIONS IN THE EVOLUTION OF MITOCHONDRIAL-DNA [J].
FUKUDA, M ;
WAKASUGI, S ;
TSUZUKI, T ;
NOMIYAMA, H ;
SHIMADA, K ;
MIYATA, T .
JOURNAL OF MOLECULAR BIOLOGY, 1985, 186 (02) :257-266
[10]   INTRODUCTION OF DISEASE-RELATED MITOCHONDRIAL-DNA DELETIONS INTO HELA-CELLS LACKING MITOCHONDRIAL-DNA RESULTS IN MITOCHONDRIAL DYSFUNCTION [J].
HAYASHI, JI ;
OHTA, S ;
KIKUCHI, A ;
TAKEMITSU, M ;
GOTO, Y ;
NONAKA, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (23) :10614-10618