Embedding of sequences of time intervals

被引:61
作者
Hegger, R
Kantz, H
机构
[1] Max-Planck-Inst. Physik Komplexer S., 01187 Dresden
来源
EUROPHYSICS LETTERS | 1997年 / 38卷 / 04期
关键词
D O I
10.1209/epl/i1997-00236-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Times series obtained from dynamical systems can be converted into sequences of time intervals between relevant events. We show that under quite general conditions time intervals are phase space observables and therefore embedding theorems for the reconstruction of a state space from scalar signals are valid. The practical applicability in data analysis is discussed with the help of numerical and experimental examples.
引用
收藏
页码:267 / 272
页数:6
相关论文
共 15 条
[1]  
ARECCHI FT, 1985, PHYS REV A, V34, P1617
[2]   EXPERIMENTAL CONTROL OF CHAOS IN A LASER [J].
CIOFINI, M ;
MEUCCI, R ;
ARECCHI, FT .
PHYSICAL REVIEW E, 1995, 52 (01) :94-97
[3]   IS THE NORMAL HEARTBEAT CHAOTIC OR HOMEOSTATIC [J].
GOLDBERGER, AL .
NEWS IN PHYSIOLOGICAL SCIENCES, 1991, 6 :87-91
[4]   NONLINEAR TIME SEQUENCE ANALYSIS [J].
Grassberger, Peter ;
Schreiber, Thomas ;
Schaffrath, Carsten .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (03) :521-547
[5]   A ROBUST METHOD TO ESTIMATE THE MAXIMAL LYAPUNOV EXPONENT OF A TIME-SERIES [J].
KANTZ, H .
PHYSICS LETTERS A, 1994, 185 (01) :77-87
[6]   NONLINEAR FORECASTING OF SPIKE TRAINS FROM SENSORY NEURONS [J].
Longtin, Andre .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (03) :651-661
[7]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[8]  
2
[9]   THE CHAOTIC BEHAVIOR OF THE LEAKY FAUCET [J].
MARTIEN, P ;
POPE, SC ;
SCOTT, PL ;
SHAW, RS .
PHYSICS LETTERS A, 1985, 110 (7-8) :399-404
[10]   GEOMETRY FROM A TIME-SERIES [J].
PACKARD, NH ;
CRUTCHFIELD, JP ;
FARMER, JD ;
SHAW, RS .
PHYSICAL REVIEW LETTERS, 1980, 45 (09) :712-716