Dissecting the assays to assess microbial tolerance to toxic chemicals in bioprocessing

被引:36
作者
Zingaro, Kyle A. [1 ]
Nicolaou, Sergios A. [1 ]
Papoutsakis, Eleftherios T. [1 ]
机构
[1] Univ Delaware, Mol Biotechnol Lab, Dept Chem & Biomol Engn, Delaware Biotechnol Inst, Newark, DE 19711 USA
基金
美国国家科学基金会;
关键词
biofuels; renewables; bioremediation; bioreactor; tolerance assays; IMPROVED ETHANOL TOLERANCE; ESCHERICHIA-COLI; CLOSTRIDIUM-ACETOBUTYLICUM; TRANSCRIPTIONAL ANALYSIS; SOLVENT TOLERANCE; FLOW-CYTOMETRY; PHYSIOLOGICAL STATES; ISOBUTANOL TOLERANCE; RECOMBINANT STRAINS; BIOFUEL PRODUCTION;
D O I
10.1016/j.tibtech.2013.08.005
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Microbial strains are increasingly used for the industrial production of chemicals and biofuels, but the toxicity of components in the feedstock and product streams limits process outputs. Selected or engineered microbes that thrive in the presence of toxic chemicals can be assessed using tolerance assays. Such assays must reasonably represent the conditions the cells will experience during the intended process and measure the appropriate physiological trait for the desired application. We review currently used tolerance assays, and examine the many parameters that affect assay outcomes. We identify and suggest the use of the best-suited assays for each industrial bioreactor operating condition, discuss next-generation assays, and propose a standardized approach for using assays to examine tolerance to toxic chemicals.
引用
收藏
页码:643 / 653
页数:11
相关论文
共 99 条
[1]   One hundred years of membrane permeability: does Overton still rule? [J].
Al-Awqati, Q .
NATURE CELL BIOLOGY, 1999, 1 (08) :E201-E202
[2]   Use of Flow Cytometry To Monitor Legionella Viability [J].
Allegra, Severine ;
Berger, Francoise ;
Berthelot, Philippe ;
Grattard, Florence ;
Pozzetto, Bruno ;
Riffard, Serge .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (24) :7813-7816
[3]   Global transcription machinery engineering: A new approach for improving cellular phenotype [J].
Alper, Hal ;
Stephanopoulos, Gregory .
METABOLIC ENGINEERING, 2007, 9 (03) :258-267
[4]   Engineering yeast transcription machinery for improved ethanol tolerance and production [J].
Alper, Hal ;
Moxley, Joel ;
Nevoigt, Elke ;
Fink, Gerald R. ;
Stephanopoulos, Gregory .
SCIENCE, 2006, 314 (5805) :1565-1568
[5]   Metabolite Stress and Tolerance in the Production of Biofuels and Chemicals: Gene-Expression-Based Systems Analysis of Butanol, Butyrate, and Acetate Stresses in the Anaerobe Clostridium acetobutylicum [J].
Alsaker, Keith V. ;
Paredes, Carlos ;
Papoutsakis, Eleftherios T. .
BIOTECHNOLOGY AND BIOENGINEERING, 2010, 105 (06) :1131-1147
[6]   Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell's response to butanol stress [J].
Alsaker, KV ;
Spitzer, TR ;
Papoutsakis, ET .
JOURNAL OF BACTERIOLOGY, 2004, 186 (07) :1959-1971
[7]   Biofuels from microbes [J].
Antoni, Dominik ;
Zverlov, Vladimir V. ;
Schwarz, Wolfgang H. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2007, 77 (01) :23-35
[8]   Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12 [J].
Aono, R ;
Tsukagoshi, N ;
Yamamoto, M .
JOURNAL OF BACTERIOLOGY, 1998, 180 (04) :938-944
[9]   Metabolic engineering of Escherichia coli for 1-butanol production [J].
Atsumi, Shota ;
Cann, Anthony F. ;
Connor, Michael R. ;
Shen, Claire R. ;
Smith, Kevin M. ;
Brynildsen, Mark P. ;
Chou, Katherine J. Y. ;
Hanai, Taizo ;
Liao, James C. .
METABOLIC ENGINEERING, 2008, 10 (06) :305-311
[10]   Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels [J].
Atsumi, Shota ;
Hanai, Taizo ;
Liao, James C. .
NATURE, 2008, 451 (7174) :86-U13