Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death

被引:193
作者
Donovan, M [1 ]
Cotter, TG [1 ]
机构
[1] Natl Univ Ireland Univ Coll Cork, Biosci Inst, Cell Dev & Dis Biochem Dept, Cork, Ireland
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH | 2004年 / 1644卷 / 2-3期
关键词
Bcl-2; family; mitochondrion; apoptosis; caspase-independent; AIF;
D O I
10.1016/j.bbamcr.2003.08.011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Programmed cell death (PCD) is essential for normal development and maintenance of tissue homeostasis in multicellular organisms. While it is now evident that PCD can take many different forms, apoptosis is probably the most well-defined cell death programme. The characteristic morphological and biochemical features associated with this highly regulated form of cell death have until recently been exclusively attributed to the caspase family of cysteine proteases. As a result, many investigators affiliate apoptosis with its pivotal execution system, i.e. caspase activation. However, it is becoming increasingly clear that PCD or apoptosis can also proceed in a caspase-independent manner and maintain key characteristics of apoptosis. Mitochondrial integrity is central to both caspase-dependent and-independent cell death. The release of pro-apoptotic factors from the mitochondrial intermembrane space is a key event in a cell's commitment to die and is under the tight regulation of the Bcl-2 family. However, the underlying mechanisms governing the efflux of these pro-death molecules are largely unknown. This review will focus on the regulation of mitochondrial integrity by Bcl-2 family members with particular attention to the controlled release of factors involved in caspase-independent cell death. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:133 / 147
页数:15
相关论文
共 152 条
[1]   Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2 [J].
Adrain, C ;
Creagh, EM ;
Martin, SJ .
EMBO JOURNAL, 2001, 20 (23) :6627-6636
[2]   Granzyme B induces BID-mediated cytochrome c release and mitochondrial permeability transition [J].
Alimonti, JB ;
Shi, LF ;
Baijal, PK ;
Greenberg, AH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (10) :6974-6982
[3]   Bax and other pro-apoptotic Bcl-2 family "killer-proteins" and their victim, the mitochondrion [J].
Antonsson, B .
CELL AND TISSUE RESEARCH, 2001, 306 (03) :347-361
[4]   Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria [J].
Antonsson, B ;
Montessuit, S ;
Lauper, S ;
Eskes, R ;
Martinou, JC .
BIOCHEMICAL JOURNAL, 2000, 345 :271-278
[5]   Inhibition of Bax channel-forming activity by Bcl-2 [J].
Antonsson, B ;
Conti, F ;
Ciavatta, A ;
Montessuit, S ;
Lewis, S ;
Martinou, I ;
Bernasconi, L ;
Bernard, A ;
Mermod, JJ ;
Mazzei, G ;
Maundrell, K ;
Gambale, F ;
Sadoul, R ;
Martinou, JC .
SCIENCE, 1997, 277 (5324) :370-372
[6]   Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells [J].
Antonsson, B ;
Montessuit, S ;
Sanchez, B ;
Martinou, JC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (15) :11615-11623
[7]   Mitochondrial release of apoptosis-inducing factor occurs downstream of cytochrome c release in response to several proapoptotic stimuli [J].
Arnoult, D ;
Parone, P ;
Martinou, JC ;
Antonsson, B ;
Estaquier, J ;
Ameisen, JC .
JOURNAL OF CELL BIOLOGY, 2002, 159 (06) :923-929
[8]   On the evolutionary conservation of the cell death pathway:: Mitochondrial release of an apoptosis-inducing factor during Dictyostelium discoideum cell death [J].
Arnoult, D ;
Tatischeff, I ;
Estaquier, J ;
Girard, M ;
Sureau, F ;
Tissier, JP ;
Grodet, A ;
Dellinger, M ;
Traincard, F ;
Kahn, A ;
Ameisen, JC ;
Petit, PX .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (10) :3016-3030
[9]  
Bao JJ, 2002, CANCER RES, V62, P7264
[10]   Granzyme B short-circuits the need for caspase 8 activity during granule-mediated cytotoxic T-lymphocyte killing by directly cleaving bid [J].
Barry, M ;
Heibein, JA ;
Pinkoski, MJ ;
Lee, SF ;
Moyer, RW ;
Green, DR ;
Bleackley, RC .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (11) :3781-3794