Introduction to the diffusion Monte Carlo method

被引:114
作者
Kosztin, I
Faber, B
Schulten, K
机构
[1] Department of Physics, Univ. Illinois at Urbana-Champaign, Urbana, IL 61801
基金
美国国家科学基金会;
关键词
D O I
10.1119/1.18168
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
A self-contained and tutorial presentation of the diffusion Monte Carlo method for determining the ground state energy and wave function of quantum systems is provided. First, the theoretical basis of the method is derived and then a numerical algorithm is formulated. The algorithm is applied to determine the ground state of the harmonic oscillator, the Morse oscillator, the hydrogen atom, and the electronic ground state of the H-2(+) ion and of the H-2 molecule. A computer program on which the sample calculations are based is available upon request. (C) 1996 American Association of Physics Teachers.
引用
收藏
页码:633 / 644
页数:12
相关论文
共 15 条
[1]   RANDOM-WALK SIMULATION OF SCHRODINGER EQUATION - H+3 [J].
ANDERSON, JB .
JOURNAL OF CHEMICAL PHYSICS, 1975, 63 (04) :1499-1503
[2]  
[Anonymous], 1993, WORLD SCI
[3]   NUMERICAL-SOLUTION OF FIELD-THEORIES USING RANDOM-WALKS [J].
BARNES, T ;
DANIELL, GJ .
NUCLEAR PHYSICS B, 1985, 257 (02) :173-198
[4]   QUANTUM MONTE-CARLO [J].
CEPERLEY, D ;
ALDER, B .
SCIENCE, 1986, 231 (4738) :555-560
[5]   QUANTUM MONTE-CARLO FOR MOLECULES - GREEN-FUNCTION AND NODAL RELEASE [J].
CEPERLEY, DM ;
ALDER, BJ .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (12) :5833-5844
[6]  
Feynman R P, 1965, QUANTUM MECH PATH IN
[7]  
Herzberg G., 1950, MOL SPECTRA MOL STRU
[8]   THE FACTORIZATION METHOD [J].
INFELD, L ;
HULL, TE .
REVIEWS OF MODERN PHYSICS, 1951, 23 (01) :21-68
[9]  
Kalos M. H., 1986, MONTE CARLO METHODS
[10]  
Khandekar D C., 1993, Path integral methods and their applications, DOI DOI 10.1142/1332