High temperature operation of a solid polymer electrolyte fuel cell stack based on a new ionomer membrane

被引:5
作者
Arico, A. S. [1 ]
Di Blasi, A. [1 ]
Brunaccini, G. [1 ]
Sergi, F. [1 ]
Antonucci, V. [1 ]
Asher, P. [2 ]
Buche, S. [2 ]
Fongalland, D. [2 ]
Hards, G. A. [2 ]
Sharman, J. D. B. [2 ]
Bayer, A. [3 ]
Heinz, G. [3 ]
Zuber, R. [4 ]
Gebert, M. [5 ]
Corasaniti, M. [5 ]
Ghielmi, A. [5 ]
Jones, D. J. [6 ]
机构
[1] CNR ITAE, Via Salita Santa Lucia Contesse 5, I-98125 Messina, Italy
[2] Johnson Matthey Technol Ctr, Reading RG4 9NH, Berks, England
[3] SolviCore GmbH & Co KG, D-63457 Hanau, Germany
[4] Umicore AG&Co KG, Dept RD EP, D-63457 Hanau, Germany
[5] Solvay Solexis, I-20021 Bollate, Italy
[6] Univ Montpellier 2, CNRS, ICGM AIME, F-34095 Montpellier, France
来源
PROTON EXCHANGE MEMBRANE FUEL CELLS 9 | 2009年 / 25卷 / 01期
关键词
D O I
10.1149/1.3210756
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Polymer electrolyte fuel cell stacks assembled with Johnson Matthey Fuel Cells and SolviCore MEAs based on the Aquivion (TM) short-side chain, chemically stabilized perfluorosulfonic acid membrane were investigated in the framework of the Autobrane EU project. Electrochemical experiments in fuel cell short stacks were performed under automotive conditions at pressures of 1-1.5 bar abs. over a wide temperature range, up to 130 degrees C, with varying levels of humidity (down to 18% R. H.). The stacks using the first set of large area (360 cm(2)) MEAs showed elevated performance in the temperature range from ambient to 100 degrees C (cell power density in the range of 600-700 mWcm(-2)) with a moderate decrease above 100 degrees C. The performances and electrical efficiencies achieved at 110 degrees C (cell power density of about 400 mWcm(-2) at an average cell voltage of about 0.6 V) are promising for automotive applications. Further optimization of membrane, MEAs and stack components to maximize the high temperature performance is currently underway.
引用
收藏
页码:1999 / 2007
页数:9
相关论文
共 6 条
[1]   Hyflon ion membranes for fuel cells [J].
Arcella, V ;
Troglia, C ;
Ghielmi, A .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (20) :7646-7651
[2]  
Aricò AS, 1998, ELECTROCHEM SOLID ST, V1, P66, DOI 10.1149/1.1390638
[3]   On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells [J].
Kreuer, KD .
JOURNAL OF MEMBRANE SCIENCE, 2001, 185 (01) :29-39
[4]  
Tchicaya-Bouckary L, 2002, FUEL CELLS, V2, P40, DOI 10.1002/1615-6854(20020815)2:1<40::AID-FUCE40>3.0.CO
[5]  
2-U
[6]   Evaluation of ethanol, 1-propanol, and 5-propanol in a direct oxidation polymer-electrolyte fuel cell - A real-time mass spectrometry study [J].
Wang, JT ;
Wasmus, S ;
Savinell, RF .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (12) :4218-4224