Assembly of AUF1 oligomers on U-rich RNA targets by sequential dimer association

被引:88
作者
Wilson, GM [1 ]
Sun, Y [1 ]
Lu, HP [1 ]
Brewer, G [1 ]
机构
[1] Wake Forest Univ, Bowman Gray Sch Med, Dept Microbiol & Immunol, Winston Salem, NC 27157 USA
关键词
D O I
10.1074/jbc.274.47.33374
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many labile mammalian mRNAs are targeted for rapid cytoplasmic turnover by the presence of A + U-rich elements (AREs) within their 3'-untranslated regions, These elements are selectively recognized by AUF1, a component of a multisubunit complex that may participate in the initiation of mRNA decay, In this study, we have investigated the recognition of AREs by AUF1 in vitro using oligoribonucleotide substrates. Gel mobility shift assays demonstrated that U-rich RNA targets were specifically bound by AUF1, generating two distinct RNA-protein complexes in a concentration-dependent manner. Chemical cross-linking revealed the interaction of AUF1 dimers to form tetrameric structures involving protein-protein interactions in the presence of high affinity RNA targets. From these data, a model of AUF1 association with AREs involving sequential dimer binding was developed. Using fluorescent RNA substrates, binding parameters of AUF1 dimer-ARE and tetramer-ARE equilibria were evaluated in solution by fluorescence anisotropy measurements. Using two AUF1 deletion mutants, sequences C-terminal to the RNA recognition motifs are shown to contribute to the formation of the AUF1 tetramer ARE complex but are not obligate for RNA binding activity. Kinetic studies demonstrated rapid turnover of AUF1 ARE complexes in solution, suggesting that these interactions are very dynamic in character. Taken together, these data support a model where ARE-dependent oligomerization of AUF1 may function to nucleate the formation of a trans-acting, RNA-destabilizing complex in vivo.
引用
收藏
页码:33374 / 33381
页数:8
相关论文
共 44 条
[1]   SELECTIVE DESTABILIZATION OF SHORT-LIVED MESSENGER-RNAS WITH THE GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR AU-RICH 3' NONCODING REGION IS MEDIATED BY A COTRANSLATIONAL MECHANISM [J].
AHARON, T ;
SCHNEIDER, RJ .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (03) :1971-1980
[2]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[3]   POLY(A) SHORTENING AND DEGRADATION OF THE 3' A+U-RICH SEQUENCES OF HUMAN C-MYC MESSENGER-RNA IN A CELL-FREE SYSTEM [J].
BREWER, G ;
ROSS, J .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (04) :1697-1708
[5]   Characterization of c-myc 3′ to 5′ mRNA decay Activities in an in vitro system [J].
Brewer, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (52) :34770-34774
[6]   IDENTIFICATION OF A COMMON NUCLEOTIDE-SEQUENCE IN THE 3'-UNTRANSLATED REGION OF MESSENGER-RNA MOLECULES SPECIFYING INFLAMMATORY MEDIATORS [J].
CAPUT, D ;
BEUTLER, B ;
HARTOG, K ;
THAYER, R ;
BROWNSHIMER, S ;
CERAMI, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (06) :1670-1674
[7]  
CAREY J, 1991, METHOD ENZYMOL, V208, P103
[8]   FLUORESCENCE POLARIZATION - A NEW TOOL FOR CELL AND MOLECULAR-BIOLOGY [J].
CHECOVICH, WJ ;
BOLGER, RE ;
BURKE, T .
NATURE, 1995, 375 (6528) :254-256
[9]   AU-RICH ELEMENTS - CHARACTERIZATION AND IMPORTANCE IN MESSENGER-RNA DEGRADATION [J].
CHEN, CYA ;
SHYU, AB .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (11) :465-470
[10]  
CURATOLA AM, 1995, MOL CELL BIOL, V15, P6331