Dynamic self-stiffening in liquid crystal elastomers

被引:78
作者
Agrawal, Aditya [1 ]
Chipara, Alin C. [2 ]
Shamoo, Yousif [3 ]
Patra, Prabir K. [4 ,5 ]
Carey, Brent J. [2 ]
Ajayan, Pulickel M. [2 ]
Chapman, Walter G. [1 ]
Verduzco, Rafael [1 ]
机构
[1] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA
[2] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA
[3] Rice Univ, Dept Biochem & Cell Biol, Houston, TX 77005 USA
[4] Univ Bridgeport, Dept Biomed Engn, Bridgeport, CT 06604 USA
[5] Univ Bridgeport, Dept Mech Engn, Bridgeport, CT 06604 USA
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
关键词
DISORDERED NEMATIC ELASTOMERS; CONSTITUTIVE MODEL; STRESS; BEHAVIOR; GROWTH; MUSCLE;
D O I
10.1038/ncomms2772
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biological tissues have the remarkable ability to remodel and repair in response to disease, injury and mechanical stresses. Synthetic materials lack the complexity of biological tissues, and man-made materials that respond to external stresses through a permanent increase in stiffness are uncommon. Here we report that polydomain nematic liquid crystal elastomers increase in stiffness by up to 90% when subjected to a low-amplitude (5%), repetitive (dynamic) compression. Elastomer stiffening is influenced by liquid crystal content, the presence of a nematic liquid crystal phase and the use of a dynamic as opposed to static deformation. Through rheological and X-ray diffraction measurements, stiffening can be attributed to a mobile nematic director, which rotates in response to dynamic compression. Stiffening under dynamic compression has not been previously observed in liquid crystal elastomers and may be useful for the development of self-healing materials or for the development of biocompatible, adaptive materials for tissue replacement.
引用
收藏
页数:6
相关论文
共 30 条
[1]   Bis-isoxazolidines: A new class of corrosion inhibitors of mild steel in acidic media [J].
Ali, S. A. ;
Al-Muallem, H. A. ;
Rahman, S. U. ;
Saeed, M. T. .
CORROSION SCIENCE, 2008, 50 (11) :3070-3077
[2]  
Bassett D.C., 1988, Developments in Crystalline Polymers, P1
[3]   Observation of Dynamic Strain Hardening in Polymer Nanocomposites [J].
Carey, Brent J. ;
Patra, Prabir K. ;
Ci, Lijie ;
Silva, Glaura G. ;
Ajayan, Pulickel M. .
ACS NANO, 2011, 5 (04) :2715-2722
[4]   Slow stress relaxation in randomly disordered nematic elastomers and gels [J].
Clarke, SM ;
Terentjev, EM .
PHYSICAL REVIEW LETTERS, 1998, 81 (20) :4436-4439
[5]   A review on the Mullins effect [J].
Diani, Julie ;
Fayolle, Bruno ;
Gilormini, Pierre .
EUROPEAN POLYMER JOURNAL, 2009, 45 (03) :601-612
[6]   A constitutive model for muscle properties in a soft-bodied arthropod [J].
Dorfmann, A. ;
Trimmer, B. A. ;
Woods, W. A., Jr. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2007, 4 (13) :257-269
[7]   A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber [J].
Dorfmann, A ;
Ogden, RW .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2004, 41 (07) :1855-1878
[8]  
FINKELMANN H, 1981, MAKROMOL CHEM-RAPID, V2, P317
[9]   The elastic anisotropy of nematic elastomers [J].
Finkelmann, H ;
Greve, A ;
Warner, M .
EUROPEAN PHYSICAL JOURNAL E, 2001, 5 (03) :281-293
[10]  
Fung Y, 2013, Biomechanics: mechanical properties of living tissues