Hyperbolic trigonometry in two-dimensional space-time geometry

被引:25
作者
Catoni, F [1 ]
Cannata, R [1 ]
Catoni, V [1 ]
Zampetti, P [1 ]
机构
[1] ENEA, Ctr Ric Casaccia, Rome, Italy
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS | 2003年 / 118卷 / 05期
关键词
D O I
10.1393/ncb/i2003-10012-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By, analogy with complex numbers, a system of hyperbolic numbers call be introduced in the same way: {z = x + hy; h(2) = 1 x, y is an element of R}. As complex numbers are linked to the Euclidean geometry, so this system of numbers is linked to the pseudo-Euclidean plane geometry (space-time geometry). In this paper we will show how this system of numbers allows, by means of a Cartesian representation, an operative definition of hyperbolic functions rising the invariance with respect to special relativity Lorentz group. From this definition, by using elementary mathematics and an Euclidean approach, it is straightforward to formalise the pseudo-Euclidean trigonometry in the Cartesian plane with the same coherence as the Euclidean trigonometry.
引用
收藏
页码:475 / 492
页数:18
相关论文
共 15 条
[1]  
BELTRAMI E, 2003, OPERE MAT, V1, P374
[2]  
Catoni F, 2000, NUOVO CIMENTO B, V115, P1433
[3]  
CATONI F, 1997, RTERG199710
[4]  
CATONI F, 1994, RTERG9418
[5]  
CATONI F, 2001, RTERG200112
[6]  
CHABAT B, 1990, INTRO ANAL COMPEX, V1
[7]  
EFIMOV N, 1985, GEOMETRIE SUPERIEURE
[8]  
Eisenhart L. P., 1949, Riemannian Geometry
[9]   Two-dimensional geometries, topologies, trigonometries and physics generated by complex-type numbers [J].
Paul Fjelstad ;
Sorin G. Gal .
Advances in Applied Clifford Algebras, 2001, 11 (1) :81-107
[10]   EXTENDING SPECIAL RELATIVITY VIA THE PERPLEX NUMBERS [J].
FJELSTAD, P .
AMERICAN JOURNAL OF PHYSICS, 1986, 54 (05) :416-422