Frequency distribution of water and solute transport properties derived from pan sampler data

被引:19
作者
Boll, J
Selker, JS
Shalit, G
Steenhuis, TS
机构
[1] OREGON STATE UNIV,DEPT BIORESOURCE ENGN,CORVALLIS,OR 97331
[2] TECHNION ISRAEL INST TECHNOL,DEPT AGR ENGN,IL-32000 HAIFA,ISRAEL
[3] CORNELL UNIV,DEPT AGR & BIOL ENGN,ITHACA,NY 14853
关键词
D O I
10.1029/97WR02588
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Modeling of water and solute movement requires knowledge of the nature of the spatial distribution of transport parameters. Only a few of the field experiments reported in the literature contained enough measurements to discriminate statistically between lognormal and normal distributions. To obtain statistically significant data sets, six field experiments at four different sites were performed. Different degrees of macropore and matrix flow occurred at each site. In each experiment a solute pulse was added followed by artificial or natural rainfall. Sixteen thousand spatial distributed fluxes and solute concentrations were collected with wick and gravity samplers. Spatial distributions of solute velocity, dispersion coefficient, water flux, and solute concentration were determined over different timescales ranging from 1 hour to the duration of the experiment. A chi-square test was used to discriminate between the type of frequency distributions. The spatially distributed water and solute transport parameters when averaged over the experimental period were found to fit the lognormal distribution when macropore flow dominates. Otherwise, when only matrix flow occurs a normal distribution fitted the data better. Under no-till cultivation, hourly concentration and water flux are lognormally distributed, while tillage makes the tracer concentration to be normally distributed. Spatial frequency distributions of daily solute concentration change in time: Concentrations were normally distributed when the bulk of the solute broke through with the highest concentrations and lognormally distributed in the beginning and end of the experiment. Daily water flux was found to be lognormally distributed throughout the experiment, but the distribution varied between water applications: Shortly after water application, when wick and gravity pan samplers collected water predominantly from macropores and normally distributed at later times when mostly matrix pores were sampled with wick pan samplers.
引用
收藏
页码:2655 / 2664
页数:10
相关论文
共 41 条
[1]  
[Anonymous], EA4228 EPRI
[2]  
BABALOLA O, 1978, SOIL SCI, V126, P269, DOI 10.1097/00010694-197811000-00003
[3]   SPATIAL VARIABILITY OF LEACHING CHARACTERISTICS OF A FIELD SOIL [J].
BIGGAR, JW ;
NIELSEN, DR .
WATER RESOURCES RESEARCH, 1976, 12 (01) :78-84
[4]  
BOLL J, 1995, THESIS CORNELL U ITH
[5]  
BRO PB, 1984, THESIS CORNELL U ITH
[6]   DEVELOPING JOINT PROBABILITY-DISTRIBUTIONS OF SOIL-WATER RETENTION CHARACTERISTICS [J].
CARSEL, RF ;
PARRISH, RS .
WATER RESOURCES RESEARCH, 1988, 24 (05) :755-769
[7]   In situ measurement of the solute adsorption isotherm using a disc permeameter [J].
Clothier, BE ;
Magesan, GN ;
Heng, L ;
Vogeler, I .
WATER RESOURCES RESEARCH, 1996, 32 (04) :771-778
[8]   SUSCEPTIBILITY OF SOILS TO PREFERENTIAL FLOW OF WATER - A FIELD-STUDY [J].
FLURY, M ;
FLUHLER, H ;
JURY, WA ;
LEUENBERGER, J .
WATER RESOURCES RESEARCH, 1994, 30 (07) :1945-1954
[9]  
GELHAR L W, 1974, Ground Water, V12, P399, DOI 10.1111/j.1745-6584.1974.tb03050.x
[10]   Length scales of convection-dispersion approaches to flow and transport in porous media [J].
Germann, Peter F. .
Journal of Contaminant Hydrology, 1991, 7 (1-2) :39-49