Actions of PP2A on the MAP kinase pathway and apoptosis are mediated by distinct regulatory subunits

被引:224
作者
Silverstein, AM [1 ]
Barrow, CA [1 ]
Davis, AJ [1 ]
Mumby, MC [1 ]
机构
[1] Univ Texas, SW Med Ctr, Dept Pharmacol, Dallas, TX 75390 USA
关键词
D O I
10.1073/pnas.072071699
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Individual subunits of protein phosphatase 2A (PP2A), protein phosphatase 4, and protein phosphatase 5 were knocked out in Drosophila Schneider 2 cells by using RNA interference. Ablation of either the scaffold (A) or catalytic (C) subunits of PP2A caused the disappearance of all PP2A subunits. Treating cells with doublestranded RNA targeting all four of the Drosophila PP2A regulatory subunits caused the disappearance of both the A and C subunits. The loss of PP2A subunits was associated with decreased protein stability indicating that only the heterotrimeric forms of PP2A are stable in intact cells. Ablation of total PP2A by using doublestranded RNA against either the A or C subunit, or specific ablation of the R2/B regulatory subunit, enhanced insulin-induced ERK activation. These results indicated that the R2/B subunit targets PP2A to the mitogen-activated protein (MAP) kinase cascade in Schneider 2 cells, where it acts as a negative regulator. A severe loss of viability occurred in cells in which total PP2A or both isoforms of the Drosophila B5/B56 subunit had been ablated. The reduced viability of these cells correlated with the induction of markers of apoptosis including membrane blebbing and stimulation of caspase-3-like activity. These observations indicated that PP2A has a powerful antiapoptotic activity that is specifically mediated by the R5/1356 regulatory subunits. In contrast to PP2A, ablation of protein phosphatase 4 caused only a slight reduction in cell growth but had no effect on MAP kinase signaling oar apoptosis. Depletion of protein phosphatase 5 had no effects on MAP kinase, cell growth, or apoptosis.
引用
收藏
页码:4221 / 4226
页数:6
相关论文
共 59 条
[1]   Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation [J].
Abraham, D ;
Podar, K ;
Pacher, M ;
Kubicek, M ;
Welzel, N ;
Hemmings, BA ;
Dilworth, SM ;
Mischak, H ;
Kolch, W ;
Baccarini, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (29) :22300-22304
[2]   INACTIVATION OF P42 MAP KINASE BY PROTEIN PHOSPHATASE 2A AND A PROTEIN-TYROSINE-PHOSPHATASE, BUT NOT CL100, IN VARIOUS CELL-LINES [J].
ALESSI, DR ;
GOMEZ, N ;
MOORHEAD, C ;
LEWIS, T ;
KEYSE, SM ;
COHEN, P .
CURRENT BIOLOGY, 1995, 5 (03) :283-295
[3]   REQUIREMENT FOR INTEGRATION OF SIGNALS FROM 2 DISTINCT PHOSPHORYLATION PATHWAYS FOR ACTIVATION OF MAP KINASE [J].
ANDERSON, NG ;
MALLER, JL ;
TONKS, NK ;
STURGILL, TW .
NATURE, 1990, 343 (6259) :651-653
[4]   Autoregulation of protein phosphatase type 2A expression [J].
Baharians, Z ;
Schönthal, AH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (30) :19019-19024
[5]   Phosphorylation status of the SCR homeodomain determines its functional activity:: essential role for protein phosphatase 2A,B′ [J].
Berry, M ;
Gehring, W .
EMBO JOURNAL, 2000, 19 (12) :2946-2957
[6]   PRIMARY STRUCTURE, EXPRESSION, AND SIGNAL-DEPENDENT TYROSINE PHOSPHORYLATION OF A DROSOPHILA HOMOLOG OF EXTRACELLULAR SIGNAL-REGULATED KINASE [J].
BIGGS, WH ;
ZIPURSKY, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (14) :6295-6299
[7]   PPX, A NOVEL PROTEIN SERINE THREONINE PHOSPHATASE LOCALIZED TO CENTROSOMES [J].
BREWIS, ND ;
STREET, AJ ;
PRESCOTT, AR ;
COHEN, PTW .
EMBO JOURNAL, 1993, 12 (03) :987-996
[8]   Drosophila protein phosphatase 5 is encoded by a single gene that is most highly expressed during embryonic development [J].
Brown, L ;
Borthwick, EB ;
Cohen, PTW .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2000, 1492 (2-3) :470-476
[9]   dsRNA-mediated gene silencing in cultured Drosophila cells:: a tissue culture model for the analysis of RNA interference [J].
Caplen, NJ ;
Fleenor, J ;
Fire, A ;
Morgan, RA .
GENE, 2000, 252 (1-2) :95-105
[10]   Gene silencing by double-stranded RNA [J].
Carthew, RW .
CURRENT OPINION IN CELL BIOLOGY, 2001, 13 (02) :244-248